AI Article Synopsis

  • - Tau interacts with α-Synuclein (α-Syn) and is found in Lewy bodies, affecting the spread of α-Syn pathology related to Parkinson's disease, though the connection from gut to brain is not fully clear.
  • - Research with transgenic mouse models shows that both α-Syn and Tau pathology can spread from the gut into the brain, leading to notable behavioral defects, particularly in mice with both proteins.
  • - Interventions like truncal vagotomy and the absence of α-Syn significantly reduce the spread of these pathologies, while PET imaging successfully identifies α-Syn aggregates in both the gut and brain.

Article Abstract

Tau interacts with α-Synuclein (α-Syn) and co-localizes with it in the Lewy bodies, influencing α-Syn pathology in Parkinson's disease (PD). However, whether these biochemical events regulate α-Syn pathology spreading from the gut into the brain remains incompletely understood. Here, we show that α-Syn and Tau co-pathology is spread into the brain in gut-inducible SYN103 and/or TAU368 transgenic mouse models, eliciting behavioral defects. Gut pathology was initially observed, and α-Syn or Tau pathology was subsequently propagated into the DMV or NTS and then to other brain regions. Remarkably, more extensive spreading and widespread neuronal loss were found in double transgenic mice (Both) than in single transgenic mice. Truncal vagotomy and α-Syn deficiency significantly inhibited synucleinopathy or tauopathy spreading. The α-Syn PET tracer [F]-F0502B detected α-Syn aggregates in the gut and brain. Thus, α-Syn and Tau co-pathology can propagate from the gut to the brain, triggering behavioral disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2024.08.003DOI Listing

Publication Analysis

Top Keywords

gut brain
12
α-syn tau
12
α-syn
9
α-syn pathology
8
tau co-pathology
8
transgenic mice
8
tau
5
brain
5
gut-induced alpha-synuclein
4
alpha-synuclein tau
4

Similar Publications

Gastrointestinal lesions of eosinophilic granulomatosis with polyangiitis: a prediction model and clinical patterns.

Arthritis Res Ther

January 2025

Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.

Objective: Severe gastrointestinal lesions are associated with a poor prognosis in eosinophilic granulomatosis with polyangiitis (EGPA). The goal of this study was to develop an effective predictive model for gastrointestinal lesions and to examine clinical patterns, associated factors, treatment, and outcomes of gastrointestinal lesions in EGPA.

Methods: We retrospectively enrolled 165 EGPA patients.

View Article and Find Full Text PDF

Comparing autonomic nervous system function in patients with functional somatic syndromes, stress-related syndromes and healthy controls.

J Psychosom Res

December 2024

REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium; Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium. Electronic address:

Background: The goal of this study was to examine autonomic nervous system function by measuring heart rate (HR), heart rate variability (HRV), skin conductance levels (SCL), and peripheral skin temperature (ST) in response to and during recovery from psychosocial stressors in patients with functional somatic syndromes (FSS; fibromyalgia and/or chronic fatigue syndrome), stress-related syndromes (SRS; overstrain or burn-out), and healthy controls (HC).

Methods: Patients with FSS (n = 26), patients with SRS (n = 59), and HC (n = 30) went through a standardized psychosocial stress test consisting of a resting phase (120 s), the STROOP color word task (120 s), a mental arithmetic task (120 s) and a stress talk (120 s), each followed by a 120 s recovery period. HR, HRV, SCL, and ST were monitored continuously.

View Article and Find Full Text PDF

Introduction: Chronic nausea and vomiting are symptoms of a wide range of gastrointestinal and non-gastrointestinal conditions. Diagnosis can be challenging and requires a systematic and well-structured approach. If the initial investigation for structural, toxic and metabolic disorders is negative, digestive motility and gut-brain interaction disorders should be assessed.

View Article and Find Full Text PDF

Gastrointestinal (GI) symptoms occur frequently in pregnant women, resulting in poor quality of life. These patients frequently require co-management with the obstetrician and a physician/GI specialist. The causation is complex and multifactorial.

View Article and Find Full Text PDF

Appraising the Effects of Gut Microbiota on Insomnia Risk Through Genetic Causal Analysis.

Am J Med Genet B Neuropsychiatr Genet

January 2025

Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.

BackgroundInsomnia is a common neurological disorder that exhibits connections with the gut microbiota; however, the exact causal relationship remains unclear. MethodsWe conducted a Mendelian randomization (MR) study to systematically evaluate the causal effects of genus-level gut microbiota on insomnia risk in individuals of European ancestry. Summary-level datasets on gut microbiota were sourced from the genome-wide association study (GWAS) of MiBioGen, while datasets on insomnia were obtained from the GWAS of Neale Lab and FinnGen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!