Nitrite is a common ingredient in the industry and agriculture; it is everywhere, like water, food, and surroundings. Recently, several approaches have been developed to measure the nitrite levels. So, this review was presented as a summary of many approaches utilized to detect the nitrite. Furthermore, the types of information that may be acquired using these methodologies, including optic and electrical signals, were discussed. In electrical signal methods, electrochemical sensors are usually developed using different materials, including carbon, polymers, oxides, and hydroxides. At the same time, optic signals receiving techniques involve utilizing fluorescence chromatography, absorption, and spectrometry instruments. Furthermore, these methodologies' benefits, drawbacks, and restrictions are examined. Lastly, due to the efficiency and fast means of electrochemical detectors, it was suggested that they can be used for detecting nitrite in food safety. Futuristic advancements in the techniques used for nitrite determination are subsequently outlined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.140962 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China. Electronic address:
Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada.
Nitrite is an important chemical intermediate in the nitrogen cycle and is ubiquitously present in environmental and biological systems as a metabolite or additive in the agricultural and food industries. However, nitrite can also be toxic in excessive concentrations. As such, the development of quick, sensitive, and portable assays for its measurement is desirable.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Community Dental Health, Faculty of Dental Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.
Betel quid contains two major ingredients; Areca catechu and Piper betel, often consumed with slaked lime, tobacco, certain flavouring agents, colouring agents, herbs, and spices according to personal preferences. The areca nut alkaloids (arecoline, arecaidine, guvacine, and guvacoline), and tobacco alkaloids (nicotine, nor-nicotine) undergo nitrosation during chewing in the oral cavity with the presence of nitrite and thiocyanate and endogenously. Among the nitrosation products generated areca nut-derived nitrosamine (ADNA): 3-(methylnitrosamino) Propionitrile (MNPN) and the two tobacco-specific nitrosamines (TSNAs); N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone) (NNK) are considered Group 1 human carcinogens.
View Article and Find Full Text PDFFood Chem
December 2024
Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:
The quality and safety of meat products are critical concerns in the food industry, and consumer demand for clean-label products is increasing. To meet these needs, this study aimed to develop a nitrite-free meat spread using an astaxanthin (0.04 wt%) and carvacrol (15 wt%) co-encapsulated emulsion (AE) and chitosan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!