Photothermal therapy (PTT), particularly in the near-infrared-II (NIR-II) range, has attracted widespread attention over the past years. However, the accompanied inflammatory responses can result in undesirable side effects and contribute to treatment ineffectiveness. Herein, we introduced a novel biodegradable nanoplatform (CuS/HMON-PEG) capable of PTT and hydrogen sulfide (HS) generation, aimed at modulating inflammation for improved cancer treatment outcomes. The embedded ultrasmall copper sulphide (CuS) nanodots (1-2 nm) possessed favorable photoacoustic imaging (PAI) and NIR-II photothermal capabilities, rendering CuS/HMON-PEG an ideal phototheranostic agent. Upon internalization by 4T1 cancer cells, the hollow mesoporous organosilica nanoparticle (HMON) component could react with the overproduced glutathione (GSH) to produce HS. In addition to the anticipated photothermal tumor ablation and HS-induced mitochondrial dysfunction, the anti-inflammatory regulation was also been demonstrated by the downregulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1β). More importantly, the modulation of inflammation also promoted wound healing mediated by PTT. This work not only presents a HS-based nanomodulator to boost NIR-II PTT but also provides insights into the construction of novel organic/inorganic hybrid nanosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2024.114205 | DOI Listing |
BMC Cancer
January 2025
Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine.
Background: nowadays, the photoacoustic imaging is in the mainstream of cancer theranostics. In this study the nanoparticles with previously proven photoacoustic imaging properties, i.e.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China.
Theranostic applications in atherosclerosis plaque microenvironment-triggered nanoplatforms are significantly compromised by the complex synthesis procedure, non-specific distribution, and limited therapeutic function. Therefore, development of a facile and feasible method to construct a pathology-based stimuli-responsive nanoplatform with satisfactory theranostic performance remains a demanding and highly anticipated goal. Herein, a novel class of multifunctional supra-carbon dots (CDs), denoted as MM@Ce-CDs NPs, by a simple nanoassembly and a subsequent coating with macrophage membrane (MM), is developed for the targeted reactive oxygen species-trigged theranostic and positive regulation of the pathological plaque microenvironment in AS.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
Photoacoustic imaging has emerged as a promising modality for medical imaging since its introduction. Photoacoustic microscopy (PAM), which is based on the photoacoustic effect, combines the advantages of both optical and acoustic imaging modalities. PAM facilitates high-sensitivity, high-resolution, non-contact, and non-invasive imaging by employing optical absorption as its primary contrast mechanism.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou 730000, China.
Photoacoustics
February 2025
Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!