A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sodium silicate accelerates suberin accumulation at wounds of potato tuber by inducing phenylpropanoid pathway and fatty acid metabolism during healing. | LitMetric

AI Article Synopsis

  • * It increases the expression and activity of key enzymes responsible for synthesizing phenolic acids and fatty acids, contributing to the overall repair process.
  • * By promoting the deposition of suberin and reducing disease and weight loss in wounded tubers, sodium silicate may significantly improve healing outcomes through its effects on metabolic pathways.

Article Abstract

Although soluble silicate was reported to accelerate wound healing in muskmelon fruit through encouraging the deposition of lignin or free fatty acids, whether sodium silicate affects the biosynthesis, cross-linking and transport of suberin monomers during potato wound healing remains unknown. In this study, sodium silicate upregulated the expression and activity of 4-coumarate: coenzyme A ligase (4CL), phenylalanine ammonia lyase (PAL), and promoted the synthesis of phenolic acids (caffeic acid, p-coumaric acid, cinnamic acid, sinapic acid, and ferulic acid) in tuber wounds. Meanwhile, sodium silicate upregulated the expression of glycerol-3-phosphate acyltransferase (StGPAT), fatty acyl reductase (StFAR), long-chain acyl-CoA synthetase (StLACS), β-ketoacyl-CoA synthase (StKCS), and cytochrome P450 (StCYP86A33), and thus increased the levels of α, ω-diacids, ω-hydroxy acids, and primary alcohols in wounds. Sodium silicate also induced the expression of ω-hydroxy acid/fatty alcohol hydroxycinnamoyl transferase (StFHT), ABC transporter (StABCG), and promoted the deposition of suberin in wound surface, hence reducing tuber disease index and weight loss during healing. Taken together, sodium silicate may accelerate suberin accumulation at potato tubers wound through inducing the phenylpropanoid pathway and fatty acid metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.109093DOI Listing

Publication Analysis

Top Keywords

sodium silicate
24
suberin accumulation
8
inducing phenylpropanoid
8
phenylpropanoid pathway
8
pathway fatty
8
fatty acid
8
acid metabolism
8
wound healing
8
silicate upregulated
8
upregulated expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!