The (002) crystallographic plane-oriented hydroxyapatite (HA) and anatase TiO enable favorable hydrophilicity, osteogenesis, and biocorrosion resistance. Thus, the crystallographic plane control in HA coating and crystalline phase control in TiO is vital to affect the surface and interface bioactivity and biocorrosion resistance of titanium (Ti) implants. However, a corresponding facile and efficient fabrication method is absent to realize the HA(002) mineralization and anatase TiO formation on Ti. Herein, we utilized the predominant Ti(0002) plane of the fibrous-grained titanium (FG Ti) to naturally form anatase TiO and further achieve a (002) basal plane oriented nanoHA (nHA) film through an in situ mild hydrothermal growth strategy. The formed FG Ti-nHA(002) remarkably improved hydrophilicity, mineralization, and biocorrosion resistance. Moreover, the nHA(002) film reserved the microgroove-like topological structure on FG Ti. It could enhance osteogenic differentiation through promoted contact guidance, showing one order of magnitude higher expression of osteogenic-related genes. On the other hand, the nHA(002) film restrained the osteoclast activity by blocking actin ring formation. Based on these capacities, FG Ti-nHA(002) improved new bone growth and binding strength in rabbit femur implantation, achieving satisfactory osseointegration within 2 weeks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2024.122800 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!