Background: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with multiorgan and tissue involvement. Lupus nephritis (LN), an inflammatory condition of the kidneys associated with SLE, represents a significant cause of morbidity and mortality in SLE patients. Current immunosuppressive therapies for LN have limited efficacy and can lead to significant side effects. Demethylzeylasteral (DML) has shown promise in the treatment of LN, but its precise mechanism of action remains unclear.

Purpose: To assess the therapeutic effects and potential molecular mechanisms of DML in LN METHODS: The study evaluated the renal protective effects of DML in MRL/lpr mice through assessments of immune complex levels, renal function, and pathological changes. Network pharmacology and transcriptomics approaches were used to elucidate the underlying mechanisms. Molecular docking, biacore assay, monoclonal antibody blocking experiments, and in vitro studies were conducted to verify the mechanisms of action.

Results: DML treatment reduced levels of anti-Sm and anti-dsDNA IgG antibodies, as well as serum creatinine and blood urea nitrogen levels. DML also mitigated glomerular damage and fibrosis. Mechanistically, DML alleviated podocyte damage by suppressing inflammation and enhancing autophagy through inhibition of the IL-17A/JAK2-STAT3 pathways. Additionally, DML exhibited high binding affinity with IL17A, JAK2, and STAT3.

Conclusion: These findings provide strong evidence for the beneficial effects of DML in LN, suggesting its potential as a novel therapeutic strategy for improving renal function in autoimmune kidney diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2024.155966DOI Listing

Publication Analysis

Top Keywords

podocyte damage
8
inflammation enhancing
8
enhancing autophagy
8
dml
8
effects dml
8
renal function
8
demethylzeylasteral ameliorates
4
ameliorates podocyte
4
damage murine
4
murine lupus
4

Similar Publications

To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) stands as a formidable global health challenge, often advancing to end-stage renal disease (ESRD) with devastating morbidity and mortality. At the central of this progression lies podocyte injury, a critical determinant of glomerular dysfunction. Compound K (CK), a bioactive metabolite derived from ginsenoside, has emerged as a compelling candidate for nephroprotective therapy.

View Article and Find Full Text PDF

Chronic kidney disease affects ~10% of people worldwide and there are no disease modifying therapeutics that address the underlying cause of any form of kidney disease. Genome wide association studies have identified the G1 and G2 variants in the apolipoprotein L1 (APOL1) gene as major contributors to a subtype of proteinuric kidney disease now referred to as APOL1-mediated kidney disease (AMKD). We hypothesized that inhibition of APOL1 could have therapeutic potential for this genetically-defined form of kidney disease.

View Article and Find Full Text PDF

PM2.5-induced oxidative stress upregulates PLA2R expression in the lung and is involved in the pathogenesis of membranous nephropathy through extracellular vesicles.

Front Pharmacol

December 2024

Renal Division, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Background: Particulate matter (PM2.5) has been implicated in the development of membranous nephropathy (MN), but the underlying mechanism has yet to be fully understood. Oxidative stress is an essential factor of PM2.

View Article and Find Full Text PDF

Traditional, alternative, and emerging therapeutics for focal segmental glomerulosclerosis.

Expert Opin Pharmacother

January 2025

Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy.

Introduction: Segmental focal glomerulosclerosis is a histological lesion characterized by podocyte damage. It may be a primary disease linked to an unknown circulating factor, secondary to viral infections, drug toxicity, or a disadaptive response to the loss of nephrons, or it may depend on gene mutations or have an indeterminate cause. The treatment of the primary form involves immunosuppressors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!