Background: The diffusion and perfusion parameters derived from intravoxel incoherent motion (IVIM) imaging provide promising biomarkers for noninvasively quantifying and managing various diseases. Nevertheless, due to the distribution gap between simulated and real datasets, the out-of-distribution (OOD) problem occurred in supervised learning-based methods degrades their performance and hinders their real applications.
Purpose: To address the OOD problem in supervised methods and to further improve the accuracy and stability of IVIM parameter estimation, this work proposes a novel learning framework called IterANN, based on mean deviation prior (MDP) between training and estimated IVIM parameters on the test set.
Methods: Specifically, MDP indicates that the mean of the estimated IVIM parameters always locates between the mean of IVIM parameters in the test and train sets. In IterANN, we adopt a very simple artificial neural network (ANN) architecture of two hidden layers with 12 neurons per hidden layer, an input layer containing the signals acquired at multiple b-values and an output layer composed of three IVIM parameters ( , and ). Inspired by MDP, the distribution of IVIM parameters in the training set (simulated data) is iteratively updated so that their mean gradually approaches the predicted values of the real data. This aims to achieve a strong correlation between the simulated data and the real data. To validate the effectiveness of IterANN, we compare it with several methods on both simulation and real acquisition datasets, including 21 healthy and 3 tumor subjects, in terms of residual errors of IVIM parameters or DW signals, the coefficients of variation (CV) of IVIM parameters, and the parameter contrast-to-noise ratio (PCNR) between normal and tumor tissues.
Results: On two simulation datasets, the proposed IterANN achieves the lowest residual error in IVIM parameters, especially in the case of low signal-to-noise ratio (SNR = 10), the residual error of , and is decreased by (Gaussian distribution /realistic distribution) respectively comparing to the suboptimal method. On real dataset, the IterANN achieves the highest PCNR when comparing the normal and tumor regions. Additionally, the proposed IterANN demonstrated better stability, with its CV being significantly lower than that of other methods in the vast majority of cases ( , paired-sample Student's t-test).
Conclusions: The superior performance of IterANN demonstrates that updating the distribution of the train set based on MDP can effectively solve the OOD problem, which allows us not only to improve the accuracy and stability of the estimated IVIM parameters, but also to increase the potential of IVIM in disease diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.17383 | DOI Listing |
Med Image Anal
December 2024
Faculty of Biomedical Engineering, Technion, Haifa, Israel. Electronic address:
Quantitative analysis of pseudo-diffusion in diffusion-weighted magnetic resonance imaging (DWI) data shows potential for assessing fetal lung maturation and generating valuable imaging biomarkers. Yet, the clinical utility of DWI data is hindered by unavoidable fetal motion during acquisition. We present IVIM-morph, a self-supervised deep neural network model for motion-corrected quantitative analysis of DWI data using the Intra-voxel Incoherent Motion (IVIM) model.
View Article and Find Full Text PDFMed Image Anal
November 2024
Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
In medical image analysis, the utilization of biophysical models for signal analysis offers valuable insights into the underlying tissue types and microstructural processes. In diffusion-weighted magnetic resonance imaging (DWI), a major challenge lies in accurately estimating model parameters from the acquired data due to the inherently low signal-to-noise ratio (SNR) of the signal measurements and the complexity of solving the ill-posed inverse problem. Conventional model fitting approaches treat individual voxels as independent.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
This study aimed to establish and validate a multiparameter prediction model for Ki67 expression in hepatocellular carcinoma (HCC) patients while also exploring its potential to predict the one-year recurrence risk. The clinical, pathological, and imaging data of 83 patients with HCC confirmed by postoperative pathology were analyzed, and the patients were randomly divided into a training set (n = 58) and a validation set (n = 25) at a ratio of 7:3. All patients underwent a magnetic resonance imaging (MRI) scan that included multi-b value diffusion-weighted scanning before surgery, and quantitative parameters were obtained via intravoxel incoherent motion (IVIM) and diffusion kurtosis (DKI) models.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
December 2024
From the Department of Diagnostic Medicine, Dell Medical School at The University of Texas at Austin, Austin, TX, USA (C.Y.H.), Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA (N.S., G.A., Q.W., P.C., M.A., J.G.P., B.R.G., P.R.T., G.D.H.), Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA (E.C., P.R.T., S.A.P.), Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA (P.R.T., S.A.P.), and the Department of Radiology at Texas Children's Hospital, Houston, TX, USA (S.F.K.).
Background And Purpose: There are multiple MRI perfusion techniques, with limited available literature comparing these techniques in the grading of pediatric brain tumors. For efficiency and limiting scan time, ideally only one MRI perfusion technique can be used in initial imaging. We compared DSC, DCE, and IVIM along with ADC from DWI for differentiating high versus low grade pediatric brain tumors.
View Article and Find Full Text PDFMed Phys
December 2024
Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China.
Background: Due to the low signal-to-noise ratio (SNR) and the limited number of b-values, precise parameter estimation of intravoxel incoherent motion (IVIM) imaging remains an open issue to date, especially for brain imaging where the relatively small difference between D and D easily leads to outliers and obvious graininess in estimated results.
Purpose: To propose a synthetic data driven supervised learning method (SDD-IVIM) for improving precision and noise robustness in IVIM parameter estimation without relying on real-world data for neural network training.
Methods: On account of the absence of standard IVIM parametric maps from real-world data, a novel model-based method for generating synthetic human brain IVIM data was introduced.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!