Horse's stress responses have been reported during road transport in temperate but not tropical environments. Therefore, this study measured cortisol levels, heart rate (HR), and heart rate variability (HRV) in horses during medium-distance road transport with different truck conditions in a tropical environment. Six horses were repeatedly transported in either air-conditioned trucks with full (ATF) or space (ATS) loads or non-air-conditioned trucks with full (N-ATF) and space (N-ATS) loads. Blood cortisol was determined beforehand and 5, 30, and 90 minutes post-transport. HR and HRV were assessed pre-transport and at 15-minute intervals until 90 minutes post-transport. Cortisol levels increased significantly in N-ATS horses (but non-significantly in ATF, ATS, and N-ATF horses) at 5 minutes post-transport and returned to baseline by 30 minutes post-transport. Predominant parasympathetic nervous system (PNS) activity was observed during the first few hours and returned to baseline until the destination was reached. A recurrent, increased PNS activity was detected post-transport. Interaction effects of air condition-by-loading condition-by-time, air condition-by-time, and separate effects of air condition and time were observed on HR and various HRV variables during transport. A transient increase in beat-to-beat intervals, coinciding with decreased HR, was observed in ATF horses. The PNS index increased, corresponding to a decreased sympathetic nervous system index, in ATS horses during transport. We suggest that medium-distance road transport causes no stress for transport-experienced horses in a tropical environment. Air and loading conditions impacted hormonal and autonomic modulation, causing different responses in horses transported in differently conditioned trucks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379227PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301885PLOS

Publication Analysis

Top Keywords

road transport
16
minutes post-transport
16
cortisol levels
12
heart rate
12
tropical environment
12
horses
9
levels heart
8
responses horses
8
differently conditioned
8
conditioned trucks
8

Similar Publications

Standard: Human gastric cancer organoids.

Cell Regen

December 2024

Guangzhou National Laboratory, Guangzhou, 510005, China.

Gastric cancer is one of the most common malignancies with poor prognosis. The use of organoids to simulate gastric cancer has rapidly developed over the past several years. Patient-derived gastric cancer organoids serve as in vitro models that closely mimics donor characteristics, offering new opportunities for both basic and applied research.

View Article and Find Full Text PDF

Background: Carotenoids play essential nutritional and physiological roles in aquatic animals. Since aquatic species cannot synthesize carotenoids de novo, they must obtain these compounds from their diet to meet the physiological and adaptive requirements needed in specific aquaculture stages and conditions. Carotenoid supplementation in represents a promising strategy to enhance pigmentation, health, and growth in aquaculture species, particularly in larvae and other early developmental stages.

View Article and Find Full Text PDF

TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.

View Article and Find Full Text PDF

Ultra-Stiff yet Super-Elastic Graphene Aerogels by Topological Cellular Hierarchy.

Adv Mater

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.

Lightweight cellular materials with high stiffness and excellent recoverability are critically important in structural engineering applications, but the intrinsic conflict between these two properties presents a significant challenge. Here, a topological cellular hierarchy is presented, designed to fabricate ultra-stiff (>10 MPa modulus) yet super-elastic (>90% recoverable strain) graphene aerogels. This topological cellular hierarchy, composed of massive corrugated pores and nanowalls, is designed to carry high loads through predominantly reversible buckling within the honeycomb framework.

View Article and Find Full Text PDF

Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!