Human interactive liquid crystal fiber arrays.

Sci Adv

Laboratory of Human Interactive Materials (HIM), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands.

Published: September 2024

AI Article Synopsis

  • This paper discusses the development of interactive liquid crystal fiber arrays that can change shape in response to touch, controlled via a computer interface.
  • The actuation process uniquely starts at the base of the fibers, allowing for precise manipulation of their movement by adjusting the electrical circuit they are integrated with.
  • The fibers demonstrate quick and reversible movement, making them ideal for use in wearable tech and immersive interfaces, with proven reliable performance over repeated use.

Article Abstract

This paper presents interactive liquid crystal fiber arrays that can actuate in a way perceptible by human touch. The fibers are actuated via a computer interface, enabling precise control over actuation direction, magnitude, and frequency. Unlike conventional methods, our technique initiates the actuation at the base of the fibers, which is enabled by fabricating the fibers directly onto an electrical circuit. Fiber actuation is achieved by localized addressing of an in situ formed radially aligned segment. This induces reduction in the scalar order parameter and leads to deformation of the fiber base, causing bending toward the activated region. Extensive modeling validates this actuation mechanism and identifies optimal conditions and actuation strategies for achieving the desired responses. The actuation process is rapid, is highly reversible, and maintains excellent performance over repeated (>200) cycles. These liquid crystal fiber arrays provide a safe contact with humans or other objects, making them highly suitable for applications in smart wearable devices and immersive interfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378903PMC
http://dx.doi.org/10.1126/sciadv.adp0421DOI Listing

Publication Analysis

Top Keywords

liquid crystal
12
crystal fiber
12
fiber arrays
12
interactive liquid
8
actuation
6
fiber
5
human interactive
4
arrays paper
4
paper presents
4
presents interactive
4

Similar Publications

Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.

View Article and Find Full Text PDF

The supramolecular binding exclusively by H-bonds of SeO, MoO and WO ions to form nanojars of the formula [EO⊂{-Cu(μ-OH)(μ-pz)}] (; E = Se, Mo, W; = 28-34; pz = pyrazolate) was studied in solution by electrospray ionization mass spectrometry, variable temperature, paramagnetic H NMR and UV-vis spectroscopy, and in the solid state by single-crystal X-ray crystallography. These large anions allow for the observation of a record nanojar size, (E = Mo, W). Six crystal structures are described of nanojars of varying sizes with either SeO, MoO or WO entrapped ions, including the first example of a cocrystal of two different nanojars in crystallographically unique positions, and .

View Article and Find Full Text PDF

The morphology and kinetics of the crystal growth front have been poorly explored at the particle level. Here, we experimentally observe the crystal growth front in liquid with single-particle kinetics using colloid systems and reveal a surface layer of polymorphic crystal near the solid-solid transition when the two crystals form a low-energy coherent interface. The thickness of the surface crystal can exceed 50 particles and grows logarithmically with the temperature as approaching the solid-solid transition which follows premelting theory.

View Article and Find Full Text PDF

Pyrrole in a cholesteric liquid crystal was discharged using a Tesla coil to generate pyrrole radicals, affording linear-shaped nano-ordered pyrrole oligomers. Subsequently, the electrochemical polymerisation of a pre-oriented pyrrole oligomer having good affinity for liquid crystals was performed to achieve polypyrrole-imprinted asymmetry from the cholesteric liquid crystal structure. The resultant polymers were analysed using polarising optical microscopy observations, scanning electron microscopy, electrochemistry, optical spectroscopy, and electron spin resonance.

View Article and Find Full Text PDF

Hydrogen-bonded multi-mode liquid crystal elastomer actuators.

J Mater Chem B

January 2025

Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, P.O. Box 541, FI-33101, Finland.

As biomimicry advances, liquid crystal elastomers (LCEs) are gaining attention for their (multi-)stimuli-responsiveness and reversible shape morphing. Introduction of dynamic bonds into the LCEs provides versatile means towards programmable shape morphing and adaptation to environmental cues, and new designs for dynamic LCEs are actively sought for. Here, we present a supramolecular LCE that integrates shape memory programming, humidity sensitivity, and photochemical actuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!