Heat stress is a substantial and imminent threat to plant growth and development. Understanding its adverse effects on plant development at the molecular level is crucial for sustainable agriculture. However, the molecular mechanism underlying how heat stress causes developmental defects in flowers remains poorly understood. Here, we identified Indole-3-Acetic Acid 8 (IAA8), a repressor of auxin signaling, as a substrate of mitogen-activated protein kinases (MPKs) in Arabidopsis thaliana, and found that MPK-mediated phosphorylation of IAA8 inhibits flower development. MPKs phosphorylated three residues of IAA8: S74, T77, and S135. Interestingly, transgenic plants overexpressing a phospho-mimicking mutant of IAA8 (IAA8DDD OX) exhibited defective flower development due to high IAA8 levels. Furthermore, MPK-mediated phosphorylation inhibited IAA8 polyubiquitination, thereby significantly increasing its stability. Additionally, the expression of key transcription factors involved in flower development, such as bZIP and MYB genes, was significantly perturbed in the IAA8DDD OX plants. Collectively, our study demonstrates that heat stress inhibits flower development by perturbing the expression of flower development genes through the MPK-mediated phosphorylation of IAA8, suggesting that Aux/IAA phosphorylation enables plants to fine-tune their development in response to environmental stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638004 | PMC |
http://dx.doi.org/10.1093/plphys/kiae470 | DOI Listing |
Plant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
Objective: The aromatic profile of Rosa canina L. petals hold immense potential for the fragrance and pharmaceutical industries. This study aims to investigate the chemical composition and gene expression patterns across different floral development stages to uncover the biosynthetic pathways of floral scent.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
In some mutualisms involving host plants, photoassimilates are provided as rewards to symbionts. Endophagous organisms often manipulate host plants to increase access to photoassimilates. Host manipulations by endophagous organisms that are also mutualists are poorly understood.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
Cotton is an important crop for fiber production, but the genetic basis underlying key agronomic traits, such as fiber quality and flowering days, remains complex. While machine learning (ML) has shown great potential in uncovering the genetic architecture of complex traits in other crops, its application in cotton has been limited. Here, we applied five machine learning models-AdaBoost, Gradient Boosting Regressor, LightGBM, Random Forest, and XGBoost-to identify loci associated with fiber quality and flowering days in cotton.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
ICAR-Indian Institute of Horticultural Research, Bengaluru, India.
Purpose: Tuberose ( [Medik.]) is a vegetatively propagated commercial flower crop with limited genetic variability. Crossing barriers prevailing in tuberose necessitates modern breeding techniques like in vitro mutagenesis to generate variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!