In photon-collapsed cone convolution (pCCC) algorithm of the Monaco treatment planning system (TPS), the central-axis energy spectrum is assumed constant throughout the entire irradiation area. To consider lateral variations, an off-axis softening factor is applied to attenuation coefficients during the total energy released per unit mass calculation. We evaluated this method through comparison studies of percentage depth doses (PDDs) and off-axis ratios (OARs) calculated by Monaco and measured for a 6 MV photon beam at various off-axis angles and depths. Significant differences were observed, with relative differences exceeding ± 1%. Therefore, this method may not accurately represent lateral variations of energy spectra. We propose directly implementing energy spectra on both central-axis and off-axis to improve dose calculation accuracy for large field. To this end, we introduce reconstruction of PDDs from monoenergetic depth doses (MDDs) along off-axis angles, thereby estimating energy spectra as functions of radial distance. This method derives energy spectra quickly without significantly increasing the beam modeling time. MDDs were computed through Monte Carlo simulations (DOSRZnrc). The variances between reconstructed and measured PDDs were minimized using the generalized-reduced-gradient method to optimize energy spectra. Reconstructed PDDs along off-axis angles of 0°, 1.15°, 2.29°, 3.43°, 4.57°, 5.71°, 6.84°, 7.97°, 9.09°, 10.2° to estimate energy spectra at radial distances of 0-18 cm in 2 cm increments and OARs calculated using estimated energy spectra at 5, 10, and 20 cm depths, well agreed with measurement (relative differences within ± 0.5%). In conclusion, our proposed method accurately estimates lateral energy spectrum variation, thereby improving dose calculation accuracy of pCCC algorithm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579137 | PMC |
http://dx.doi.org/10.1007/s12194-024-00835-5 | DOI Listing |
Nat Commun
January 2025
Department of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.
View Article and Find Full Text PDFNat Commun
January 2025
Chimie du Solide et de l'Énergie, UMR 8260, Collège de France, Paris, France.
As batteries drive the transition to electrified transportation and energy systems, ensuring their quality, reliability, lifetime, and safety is crucial. While the solid electrolyte interphase (SEI) is known to govern these performance characteristics, its dynamic nature makes understanding its nucleation, growth, and composition an ambitious, yet elusive aspiration. This work employs chalcogenide fibres embedded in negative electrode materials for operando Infra-red Fibre-optic Evanescent Wave Spectroscopy (IR-FEWS), combined with Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) algorithms for spectra analysis.
View Article and Find Full Text PDFEnviron Int
January 2025
State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, China.
Despite the ubiquity and complexity of atmospheric polycyclic aromatic compounds (PACs), many of these compounds are largely unknown and lack sufficient toxicity data for comprehensive risk assessments. In this study, nontarget screening assisted by in-house and self-developed spectra databases was, therefore, employed to identify PACs in atmospheric particulate matter collected from multiple outdoor settings. Additionally, absorption, distribution, metabolism, excretion, and toxicity properties were evaluated to indicate PAC's overall abilities to cause adverse outcomes and incorporated into a novel health risk assessment model to assess their inhalation risks.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan; Dry Lab (Janjua.XYZ), Physical Chemistry and Computational Modelling (PCCM), Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan. Electronic address:
Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022 China. Electronic address:
HBT-DPI was a single-molecule multi-conformational fluorescent material and had unique applications for hydrophobic/hydrophilic mapping on large-scale heterogeneous surfaces. In this paper, the different proton transfer processes and luminescence mechanisms of HBT-DPI in Dichloromethane (DCM, no hydrogen bond (HB) receptor) and N, N-Dimethylformamide (DMF, HB receptor) solvents were systematically studied. Using the quantum chemistry method, the stable structures of HBT-DPI in two solvents were determined based on the Boltzmann distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!