Ayurveda has a long-standing tradition of healthcare in Southeast Asia. Swarnaprash, a classical Ayurveda preparation, is commonly given as the pre-lacteal feed to neonates to prevent labor-related complications and infections. It comprises incinerated gold particles (InAuP/Swarna Bhasma), honey (Madhu), and clarified butter oil (CBO/Cow Ghrita). This in vitro study aimed to evaluate the therapeutic potential of the individual ingredients and combinations of Swarnaprash against selected neonatal gut pathobionts and symbionts. The study employed sophisticated instruments, including SEM with EDAX and X-ray diffraction analysis, to investigate the shape and structural disparities in the ingredients of Swarnaprash. The reported size of gold particles in Swarnaprash ranges from 0.6 to 9.5 µm. These particles are relatively smaller than those in Swarna Bhasma but larger than synthetic gold particles. Swarnaprash demonstrated both bactericidal and bacteriostatic activity against selected neonatal gut pathobionts, with the largest inhibition zones observed for P. aeruginosa and S. Typhi. It surpassed the individual efficacy of its components-Prash, InAuPs, honey, or CBO alone. Notably, Swarnaprash did not affect the selected beneficial gut bacteria. The results warrant further in vivo and clinical studies to explore the effects of Swarnaprash on neonatal gut flora, which would provide vital information for research in neonatal healthcare.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-024-04353-8 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.
Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
In this study, we used two-dimensional electronic spectroscopy to examine the early femtosecond dynamics of suspensions of colloidal gold nanorods with different aspect ratios. In all samples, the signal distribution in the 2D maps at this timescale shows a distinctive dispersive behavior, which can be explained by the interference between the exciting field and the field produced on the nanoparticle's surface by the collective motion of electrons when the plasmon is excited. Studying this interference effect, which is active only until the plasmon has been dephased, allows for a direct estimation of the dephasing time of the plasmon of an ensemble of colloidal particles.
View Article and Find Full Text PDFACS Nano
January 2025
Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China.
Decentralized testing using multiplex lateral flow assays (mLFAs) to simultaneously detect multiple analytes can significantly enhance detection efficiency, reduce cost and time, and improve analytic accuracy. However, the challenges, including the monochromatic color of probe particles, interference between different test lines, and reduced specificity and sensitivity, severely hinder mLFAs from wide use. In this study, we prepared polydopamine (PDA)-coated dyed cellulose nanoparticles (dCNPs@P) with tunable colors as the probe for mLFAs.
View Article and Find Full Text PDFFood Chem
January 2025
The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Moniliformin (MON) is a toxic secondary metabolite from Fusarium species. The natural contamination of MON in cereals and cereal by-products, poses a risk of exposure to MON. However, so far, no immunoassay method has been reported to detect MON in field samples.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States.
Polyetheretherketone (PEEK) is a high-performance polymer material for developing varying orthopedic, spine, cranial, maxillofacial, and dental implants. Despite their commendable mechanical properties and biocompatibility, the major limitation of PEEK implants is their low affinity to osseointegrate with the neighboring bone. Over the last two decades, several efforts have been made to incorporate bioactive components such as bioceramic particles in PEEK to enhance its osseointegration capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!