Multicomponent Gas Sensing Fiber Probe System Based on Platinum Coated Capillary Enhanced Raman Spectroscopy.

ACS Sens

National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China.

Published: September 2024

This paper proposes a novel multicomponent gas-sensing optical fiber probe system. It utilizes a precisely engineered Platinum-coated capillary fabricated via Atomic Layer Deposition (ALD) technology as the core for enhanced Raman spectroscopy, marking the first application of ALD in creating such a structure for gas Raman sensing. The noble metal capillary gas Raman probe demonstrates a low detection limit of 55 ppm for CO with a 30 s exposure time and good repeatability in multicomponent gas sensing. The capillary exhibits excellent stability, environmental resistance, and a large core diameter, enabling a rapid gas exchange rate and making it suitable for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c00606DOI Listing

Publication Analysis

Top Keywords

multicomponent gas
8
gas sensing
8
fiber probe
8
probe system
8
enhanced raman
8
raman spectroscopy
8
gas raman
8
sensing fiber
4
system based
4
based platinum
4

Similar Publications

Quasi-2D perovskite made with organic spacers co-crystallized with inorganic cesium lead bromide inorganics is demonstrated for near unity photoluminescence quantum yield at room temperature. However, light emitting diodes made with quasi-2D perovskites rapidly degrade which remains a major bottleneck in this field. In this work, It is shown that the bright emission originates from finely tuned multi-component 2D nano-crystalline phases that are thermodynamically unstable.

View Article and Find Full Text PDF

Refractory High-Entropy Alloys (RHEAs), such as NbMoTaW, MoNbTaVW, HfNbTaZr, ReHfNbTaW, NbTiAlVTaHfW, TiNbMoTaW (x = 0, 0.25, 0.5, 0.

View Article and Find Full Text PDF

Integration of ordered porous materials for targeted three-component gas separation.

Nat Commun

January 2025

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Separation of multi-component mixtures in an energy-efficient manner has important practical impact in chemical industry but is highly challenging. Especially, targeted simultaneous removal of multiple impurities to purify the desired product in one-step separation process is an extremely difficult task. We introduced a pore integration strategy of modularizing ordered pore structures with specific functions for on-demand assembly to deal with complex multi-component separation systems, which are unattainable by each individual pore.

View Article and Find Full Text PDF

Cyclic peptides are often used as scaffolds for the multivalent presentation of drug molecules due to their structural stability and constrained conformation. We identified a cyclic deca-peptide incorporating lipoamino acids for delivering T helper and B cell epitopes against group A Streptococcus (GAS), eliciting robust humoral immune responses. In this study, we assessed the function-immunogenicity relationship of the multi-component vaccine candidate (referred to as VC-13) to elucidate a mechanism of action.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!