The size dependence of metal cluster reactions frequently reveals valuable information on the mechanism of nanometal catalysis. Here, the reactivity of the Pt (n = 1-40) clusters with NO is studied and a significant dependence on the size of these clusters is noticed. Interestingly, the small Pt clusters like Pt and Pt are inclined to form NO complexes; some larger clusters, such as Pt , Pt , and Pt , appear to be unreactive; however, the others such as Pt and Pt are capable of decomposing NO. While Pt rapidly reacts with NO to form a stable quasitetrahedron PtO product, Pt experiences a series of NO decompositions to produce PtO . Utilizing high-precision theoretical calculations, it is shown how the atomic structures and active sites of Pt clusters play a vital role in determining their reactivity. Cooperative dual Lewis-acid sites (CDLAS) can be achieved on specific metal clusters like Pt , rendering accelerated NO decomposition via both N- and O-bonding on the neighboring Pt atoms. The influence of CDLAS on the size-dependent reaction of Pt clusters with NO is illustrated, offering insights into cluster catalysis in reactions that include the donation of electron pairs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202404638 | DOI Listing |
Small
December 2024
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
A mixed-ligand-based thermo-chemically robust and undulated metal-organic framework (MOF) is developed that embraces carboxamide moiety-grafted porous channels and activation-induced generation of open-metal site (OMS). The guest-free MOF acts as an outstanding heterogeneous catalyst in Hantzsch condensation for electronically assorted substrates with low catalyst loading and short duration under greener conditions than the reported materials. Besides Lewis acidic OMS, the carboxamide group activates the substrate via two-point hydrogen bonding, highlighting the effectiveness of custom-made functionalities in this multi-component reaction.
View Article and Find Full Text PDFNat Commun
November 2024
College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
Enantioenriched unsymmetrical vicinal diamines are important basic structural motifs. While catalytic asymmetric intermolecular 1,2-diamination of carbon-carbon double bonds represents the most straightforward approach for preparing enantioenriched vicinal-diamine-containing heterocycles, these reactions are often limited to the installation of undifferentiated amino functionalities through metal catalysis and/or the use of stoichiometric amounts of oxidants. Here, we report organocatalytic enantioselective unsymmetrical 1,2-diaminations based on the rational design of a bifunctional 1,2-diamination reagent, namely, azocarboxamides (ACAs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Joint International Research Laboratory of Energy Electrochemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
The strong basicity of fluoride ions leads to detrimental nucleophilic attack on organic components in the electrolytes, such as β-hydrogen elimination reactions with organic cations and solvents, converting "naked" F into corrosive and unstable bifluoride (HF ) ions. These reactions significantly constrain the choice of suitable solvents and salts to develop electro(chemical) stable fluoride ion electrolytes. In this work, we replaced the triple water ligands typically present in industrial organic fluoride salts with dual 1,3-diphenylurea (DPU) coordination via hydrogen bonding interaction.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
While chemical reactions at a gold electrode can be monitored using molecular conductance and driven by extrinsic stimuli, the intrinsic properties of the nanostructured interface may perform important additional functions that are not yet well understood. Here we evaluate these properties in studies of single-molecule junctions formed from components comprising 4,4'-biphenyl backbones functionalized with 12 different sulfur-based linker groups. With some linkers, we find evidence for S-C(sp) bond breaking, and C(sp)-C(sp) bond forming, reactions consistent with the transformations expected for those groups in the presence of a Lewis acid.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
The di-π-methane (DPM) rearrangement is an important organic photorearrangement that converts 1,4-diene-containing compounds to vinyl cyclopropanes, often resulting in extensive, synthetically valuable restructuring of the substrate's carbon framework. We investigated the influence of Lewis and Brønsted acids on the DPM rearrangement of dibenzobarrelenes. These studies have culminated in the identification of a dual chiral Brønsted acid-iridium photosensitizer system that enables the first highly enantioselective catalytic all-carbon DPM rearrangement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!