Botulism is a deadly neuroparalytic condition caused by the botulinum neurotoxin (BoNT) produced by Clostridium botulinum and related species. Toxin-neutralizing antibodies are the most effective treatments for BoNT intoxication. We generated human monoclonal antibodies neutralizing type B botulinum neurotoxin (BoNT/B), designated M2 and M4. The combination of these antibodies exhibited a strong neutralizing effect against BoNT/B toxicity. In this study, we analyzed the mechanisms of action of these antibodies in vitro. M4 binds to the C-terminus of the heavy chain (the receptor-binding domain) and inhibits BoNT/B binding to neuronal PC12 cells. Although M2 recognized the light (L) chain (the metalloprotease domain), it did not inhibit substrate (VAMP2) cleavage in the cleavage assay. M2 increased the surface localization of BoNT/B in PC12 cells at a later time point, suggesting that M2 inhibits the translocation of the L chain from synaptic vesicles to the cytosol. These results indicate that M2 and M4 inhibit the different processes of BoNT/B individually and that multistep inhibition is important for the synergistic effect of the combination of monoclonal antibodies. Our findings may facilitate the development of effective therapeutic antibodies against BoNTs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1348-0421.13171 | DOI Listing |
J Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico.
Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
Background/objectives: Although extemporaneous formulations of anticancer drug products for personalized therapy are produced according to Good Hospital Pharmacy Manufacturing Practice, the lack of knowledge about drug stability under clinical conditions limits the second-time use of these highly costly medications in clinical practice. Therefore, the residual compounded drugs are considered waste and a cost item that negatively affects the healthcare system. In the context of the ever-increasing interest of the health system in applying practices in line with personalized medicine and spending review policies, this research aimed to demonstrate the feasibility of incorporating analytical techniques into daily routine practice.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of General and Transplant Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
: Chronic antibody-mediated rejection (cAMR) constitutes a serious challenge in the long-term success of organ transplantation. It is associated with donor-specific antibodies (DSAs) which activate a complement pathway in response to the presence of human leukocyte antigens (HLAs) on the graft, which results in chronic inflammation and leads to graft dysfunction. One of the recent promising methods of cAMR treatment is a recombinant humanized anti-interleukin-6 receptor (IL-6R) monoclonal antibody referred to as Tocilizumab (TCZ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!