Introduction: Reduced water content in the soil triggers physiological, biochemical, and morphological damage to plants, aggravated by nutritional deficiency. One possible strategy to mitigate this damage comprises the use of silicon (Si). This study investigated whether Si can mitigate the damage caused by water deficit through nutritional mechanisms in bean plants grown under field conditions. Furthermore, it investigated whether the effectiveness of Si is influenced by water availability in the soil and the Si dose supplied.
Methods: Therefore, two split-plot experiments were carried out: with and without K supply. In both experiments,the treatments comprised a 3 × 4 factorial scheme. Treatments included three water regimes: 80% (no water deficit), 60% (moderate water deficit), and 40% (severe water deficit) of the soil's water retention capacity. Moreover, they comprised four doses of Si supplied via fertigation-0 kg/ha, 4 kg/ha, 8 kg/ha, and 12 kg/ha-arranged in a randomized block design with four replications.
Results And Discussion: The appropriate dose of Si to be applied increased with the severity of the water deficit, with the recommended dose being 6 kg/ha, 7 kg/ha, and 8 kg/ha of Si for adequate water conditions, moderate water deficit, and severe water deficit, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376090 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1421615 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).
Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).
J Am Heart Assoc
January 2025
Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China.
Background: Carotid endarterectomy (CEA) is widely used to treat carotid artery stenosis (CAS). However, the effects of CEA on unilateral CAS-induced cognitive impairment and the underlying mechanism remain poorly understood.
Methods And Results: Thirteen patients diagnosed with unilateral severe CAS underwent pre- and post-CEA assessments, including fluoro-2-deoxy-d-glucose positron emission tomography/magnetic resonance imaging, cognitive assessments, and routine blood tests before and after CEA.
Appl Biochem Biotechnol
January 2025
The Joint Institute of Tobacco and Health, No. 367, Honglin Road, Kunming, 650231, China.
Epidemiologic study suggests that nicotine reduces the risk of Parkinson's disease (PD) and thus could serve as a potential treatment. In this study, we aimed to investigate the effect of nicotine on the behavioral phenotypes and pathological characteristics of mice induced by human alpha-synuclein preformed fibers (α-syn-PFF). Mice were injected with 5 µg of human α-syn-PFF in the hippocampus while administering nicotine-containing drinking water (200 µg/mL).
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Italy; Centre of Agro-Ecological Research "Enrico Avanzi" (CiRAA), Pisa, Italy.
Tomato (Solanum lycopersicum L.) is a major crop in the Mediterranean basin, vulnerable to drought at any crop stage. Landraces are traditional, locally adapted varieties with greater resilience to water scarcity than modern cultivars.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain.
Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψ) to assess the impacts of stress timing on drought resilience in Scots pine saplings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!