Introduction Stroke is a major neurological event resulting from reduced or blocked blood flow to the brain, leading to significant morbidity. Immediate medical attention is essential to minimize brain damage and improve outcomes since it leads to many clinical deficits like locomotor impairment, instability in postural control, tonic alterations of the affected musculature, and an array of neurological dysfunctions if left unnoticed. Immersive virtual reality (VR) has emerged as a novel therapeutic tool in stroke rehabilitation, offering engaging and realistic environments for therapy. This study aims to evaluate the effectiveness of immersive VR training combined with functional gait exercises in improving dynamic balance and postural stability in stroke patients, compared to VR training alone. Methods This comparative study included 30 subjects from Madha Medical College and Hospital, Chennai, Tamil Nadu, India, divided into two groups. Group A (n=15) received immersive VR combined with functional gait exercises, while Group B (n=15) received immersive VR alone. Subjects were aged 40-60 years with stable blood pressure and a stroke duration of two weeks to six months. The study spanned 12 weeks, with 30-minute sessions on alternate days. Dynamic balance and postural stability were assessed using the Functional Gait Assessment (FGA) and Falls Efficacy Scale (FES). Pre-test and post-test scores were evaluated using parametric tests. Results Post-test mean values showed significant improvements in both groups. Group A demonstrated greater effectiveness, with lower FES scores (mean 36.66 ± 11.12) than Group B (mean 46.66 ± 9.75). FGA scores were higher in Group A (mean 28.00 ± 0.925) compared to Group B (mean 26.06 ± 1.66). Significant differences were observed in pre-test and post-test values within each group, supporting the hypothesis that combined VR and gait exercises offer superior rehabilitation outcomes. Conclusions Immersive VR combined with functional gait exercises significantly improves dynamic balance and postural stability in stroke patients compared to VR alone. This integrated approach can enhance motor function recovery, increase independence, and improve the quality of life. VR's capability to simulate real-life activities and provide immediate feedback allows for personalized rehabilitation programs. Further research is required to validate these findings and optimize VR-based rehabilitation protocols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376469 | PMC |
http://dx.doi.org/10.7759/cureus.66299 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!