Dimensional regulation of lanthanide metal-organic frameworks and their application in bacterial detection.

Chem Commun (Camb)

Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.

Published: September 2024

Low-dimensional (LD) lanthanide metal-organic frameworks (Ln-MOFs) have attracted considerable attention in different fields due to their exceptional optical properties and numerous accessible active sites. Through the dimensional regulation effect of dipicolinic acid (DPA), a new LD Ln-MOF crystal is synthesized to monitor nitroreductase (NTR) activity in living bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc02991gDOI Listing

Publication Analysis

Top Keywords

dimensional regulation
8
lanthanide metal-organic
8
metal-organic frameworks
8
regulation lanthanide
4
frameworks application
4
application bacterial
4
bacterial detection
4
detection low-dimensional
4
low-dimensional lanthanide
4
frameworks ln-mofs
4

Similar Publications

Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.

View Article and Find Full Text PDF

Neuromuscular Strategies in Dominant and Non-Dominant Legs in Dancers During Dynamic Balance Tasks.

J Dance Med Sci

January 2025

Frontier Research Institute of Convergence Sports Science, College of Educational Sciences, Yonsei University, Seoul, Korea.

Ballet-based dance training emphasizes the equal development of both legs. However, dancers often perceive differences between their legs during balance or landing. There still needs to be more consensus on the functional difference between dominant (D) and non-dominant legs (ND).

View Article and Find Full Text PDF

Deep learning has performed well in feature extraction and pattern recognition and has been widely studied in the field of fault diagnosis. However, in practical engineering applications, the lack of sample size limits the potential of deep learning in fault diagnosis. Moreover, in engineering practice, it is usually necessary to obtain multidimensional fault information (such as fault localization and quantification), while current methods mostly only provide single-dimensional information.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) remains a challenging subtype due to its aggressive nature and limited treatment options. This study investigated the potential synergistic effects of Korean mistletoe lectin ( L. agglutinin, VCA) and cisplatin on MDA-MB-231 TNBC cells using both 2D and 3D culture models.

View Article and Find Full Text PDF

S6K2 in Focus: Signaling Pathways, Post-Translational Modifications, and Computational Analysis.

Int J Mol Sci

December 2024

Division of Cancer, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK.

S6 Kinase 2 (S6K2) is a key regulator of cellular signaling and is crucial for cell growth, proliferation, and survival. This review is divided into two parts: the first focuses on the complex network of upstream effectors, downstream modulators, and post-translational modifications (PTMs) that regulate S6K2 activity. We emphasize the dynamic nature of S6K2 regulation, highlighting its critical role in cellular homeostasis and its potential as a therapeutic target in diseases like cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!