Proximity labeling (PL) has given researchers the tools to explore protein-protein interactions (PPIs) in living systems; however, most PL studies are performed on intracellular targets. We have adapted the original PL method to investigate PPIs within the extracellular compartment, which we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigated the interactome of the matrisome protein TIMP2. TIMPs are a family of multifunctional proteins that were initially defined by their ability to inhibit metalloproteinases, the major mediators of extracellular matrix (ECM) turnover. TIMP2 exhibits broad expression and is often abundant in both normal and diseased tissues. Understanding the functional transformation of matrisome regulators, such as TIMP2, during disease progression is essential for the development of ECM-targeted therapeutics. Using dual orientation fusion proteins of TIMP2 with BioID2/TurboID, we describe the TIMP2 proximal interactome (MassIVE MSV000095637). We also illustrate how the TIMP2 interactome changes in the presence of different stimuli, in different cell types, in unique culture conditions (2D vs 3D), and with different reaction kinetics, demonstrating the power of this technique versus classical PPI methods. We propose that screening of matrisome targets in disease models using ePL will reveal new therapeutic targets for further comprehensive studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460327PMC
http://dx.doi.org/10.1021/acs.jproteome.4c00606DOI Listing

Publication Analysis

Top Keywords

protein-protein interactions
8
proximity labeling
8
timp2
6
mapping extracellular
4
extracellular protein-protein
4
extracellular
4
interactions extracellular
4
extracellular proximity
4
labeling epl
4
epl proximity
4

Similar Publications

Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.

View Article and Find Full Text PDF

Discovery of Novel Small-Molecule Inhibitors Disrupting the MTDH-SND1 Protein-Protein Interaction.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.

MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.

View Article and Find Full Text PDF

Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis and Parkinson's Disease: Brain Tissue Transcriptome Analysis Reveals Interactions.

Mol Neurobiol

January 2025

Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.

This study utilises amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) human brain samples from the GEO database and employs differential expression gene (DEG) analysis to identify genes that are pivotal in both neurodegenerative diseases. Through in depth GO and KEGG enrichment analyses, we elucidated the biological functions and potential pathways associated with these DEGs. Furthermore, by constructing protein‒protein interaction networks, we highlight the significance of shared DEGs in both cellular physiology and disease contexts.

View Article and Find Full Text PDF

Mutations in the genes , , and cause three clinically overlapping thrombocytopenias characterized by a predisposition to hematological neoplasms. The gene, which encodes a protein involved in protein-protein interactions, is downregulated by RUNX1 during megakaryopoiesis. Mutations in 5'UTR of ANKRD26, leading to ANKRD26-RT, disrupt this regulation, resulting in the persistent expression of ANKRD26, which leads to impaired platelet biogenesis and an increased risk of leukemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!