Cell Membrane-Anchored AND Logic Gate Aptasensor for Tumor Cell-Specific Imaging with Improved Accuracy.

Anal Chem

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China.

Published: September 2024

AI Article Synopsis

  • - Accurate imaging of tumor cells is crucial for early cancer detection, but existing single-biomarker sensors struggle with false positives and specificity issues.
  • - The paper introduces a novel sequential response aptasensor built on a DNA "AND" logic gate, using specific DNA strands to create a Y-shaped structure that gives it unique detection capabilities.
  • - This sensor activates and emits fluorescence upon detecting both an acidic tumor environment and ATP, allowing it to accurately differentiate cancerous MCF-7 cells from normal cells, presenting a promising method for tumor diagnosis.

Article Abstract

Accurate and rapid imaging of tumor cells is of vital importance for early cancer diagnosis and intervention. Aptamer-based fluorescence sensors have become a potent instrument for bioimaging, while false positives and on-target off-tumors linked to single-biomarker aptasensors compromise the specificity and sensitivity of cancer imaging. In this paper, we describe a sequential response aptasensor for precise cancer cell identification that is based on a DNA "AND" logic gate. Specifically, the sensor consists of three single-stranded DNA, including the P-strand that can sensitively respond to an acid environment, the L-strand containing the ATP aptamer sequence, and the R-strand for target cell anchoring. These DNA strands hybridize with one another to create a Y-shaped structure (named Y-ALGN). The aptamer in the R-strand is utilized to anchor the sensor to the target cell membrane primarily. Responding to the extracellular acidic environment of the tumor (input 1), the I-motif sequence forms a tetramer structure so that the P-strand is released from the Y-shaped structure and exposes the ATP binding sites in the L-strand. Extracellular ATP, as input 2, continuously operates the DNA aptasensor to complete the logic computation. Upon the sequential response of both protons and ATP molecules, the aptasensor is activated with restored fluorescence on a particular cancer cell membrane. Benefiting from the precise computation capacity of the "AND" logic gate, the Y-ALGN aptasensor can distinguish between MCF-7 cells and normal cells with high accuracy. As a simple and dual-stimuli-responsive strategy, this nanodevice would offer a fresh approach for accurately diagnosing tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c02077DOI Listing

Publication Analysis

Top Keywords

logic gate
12
tumor cells
8
sequential response
8
cancer cell
8
"and" logic
8
target cell
8
y-shaped structure
8
cell membrane
8
cell
5
aptasensor
5

Similar Publications

Nanofluidic iontronics, including the field-effect ionic diode (FE-ID) and field-effect ionic transistor (FE-IT), represent emerging nanofluidic logic devices that have been employed in sensitive analyses. Making analyte recognitions in predefined nanofluidic devices has been verified to improve the sensitivity and selectivity using a single ionic signal, such as ionic current amplification, rectification, and Coulomb blockade. However, the detection of analytes in complex systems generally necessitates more diverse signals beyond just ionic currents.

View Article and Find Full Text PDF

By a simple condensation reaction, the receptor with anthraquinone moiety was synthesized and its sensing properties were explored in the anion sensing studies via colorimetric, UV-vis studies, fluorescence studies, and DFT calculations. The synthesized receptor senses both acetate and hypochlorite ions in DMSO medium. By the addition of all anions into the receptor the colour change was observed from pink to light purple colour for acetate ion and pink to light blue for hypochlorite ion.

View Article and Find Full Text PDF

In the era of artificial intelligence, there has been a rise in novel computing methods due to the increased demand for rapid and effective data processing. It is of great significance to develop memristor devices capable of emulating the computational neural network of the brain, especially in the realm of artificial intelligence applications. In this work, a memristor based on NiAl-layered double hydroxides is presented with excellent electrical performance, including analog resistive conversion characteristics and the effect of multi-level conductivity modulation.

View Article and Find Full Text PDF

A new photopolymerizable organic-inorganic (O-I) hybrid sol-gel material, AUP@SiO-184, has been synthesized and utilized as a gate dielectric in flexible organic thin-film transistors (OTFTs). The previously reported three-arm alkoxy-functionalized silane amphiphilic polymer has yielded stable O-I hybrid materials comprising uniformly dispersed nanoparticles in the sol state. In this study, a photosensitizer was introduced, facilitating curing effects under ultraviolet light.

View Article and Find Full Text PDF

Rapid Recognition and Monitoring of Multiple Core Biomarkers with Point-of-Care Importance through Combinatorial DNA Logic Operation.

Anal Chem

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!