Generation of singlet oxygen inside living cells: correlation between phosphorescence decay lifetime, localization and outcome of photodynamic action.

Photochem Photobiol Sci

Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

Published: September 2024

Photodynamic therapy (PDT) is a promising alternative treatment for localized lesions and infections, utilizing reactive oxygen species (ROS) generated by photosensitizers (PS) upon light activation. Singlet oxygen (O) is a key ROS responsible for photodynamic damage. However, the effectiveness of PS in biological systems may not correlate with the efficiency of singlet oxygen generation in homogeneous solutions. This study investigated singlet oxygen generation and its decay in various cellular microenvironments using liposome and ARPE-19 cell models. Rose Bengal (RB), methylene blue (MB), and protoporphyrin IX (PpIX) were employed as selected PS. Lifetimes of singlet oxygen generated by the selected photosensitizers in different cellular compartments varied, indicating different quenching rates with singlet oxygen. RB, located near cell membranes, exhibited the highest phototoxicity and lipid/protein peroxidation, followed by PpIX, while MB showed minimal cytotoxicity in similar conditions. Singlet oxygen decay lifetimes provide insights into PS localization and potential phototoxicity, highlighting the importance of the lipid microenvironment in PDT efficacy, providing useful screening method prior to in vivo applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43630-024-00620-8DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
28
oxygen
8
oxygen generation
8
singlet
6
generation singlet
4
oxygen inside
4
inside living
4
living cells
4
cells correlation
4
correlation phosphorescence
4

Similar Publications

The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.

View Article and Find Full Text PDF

In this study, Diels-Alder reaction was performed to sulfolene and endo/exo-diacetate compounds. After a series of reactions, new conduritol A and F analogs containing oxo-bridge and naphthalene rings in their structures were synthesized. To the starting compound, bromination, elimination, singlet oxygen reaction, acetylation, selective oxidation with osmium tetroxide (OsO), and m-chloroperbenzoic acid (m-CPBA), re-acetylation, and finally hydrolysis of the compounds by NH(g)/MeOH reactions were carried out.

View Article and Find Full Text PDF

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.

View Article and Find Full Text PDF

Exploring Gluconamide-Modified Silica Nanoparticles of Different Sizes as Effective Carriers for Antimicrobial Photodynamic Therapy.

Nanomaterials (Basel)

December 2024

Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.

Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!