The biodiversity crisis is pruning the Tree of Life in a way that threatens billions of years of evolutionary history and there is a need to understand where the greatest losses are predicted to occur. We therefore present threatened evolutionary history mapped for all tetrapod groups and describe patterns of Evolutionarily Distinct and Globally Endangered (EDGE) species. Using a complementarity procedure with uncertainty incorporated for 33,628 species, we identify 25 priority tetrapod EDGE Zones, which are insufficiently protected and disproportionately exposed to high human pressure. Tetrapod EDGE Zones are spread over five continents, 33 countries, and 117 ecoregions. Together, they occupy 0.723% of the world's surface but harbour one-third of the world's threatened evolutionary history and EDGE tetrapod species, half of which is endemic. These EDGE Zones highlight areas of immediate concern for researchers, practitioners, policymakers, and communicators looking to safeguard the tetrapod Tree of Life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377708 | PMC |
http://dx.doi.org/10.1038/s41467-024-51992-5 | DOI Listing |
Sci Rep
January 2025
Physics Department, Science College, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
Semantic segmentation of high-resolution images from remote sensing is crucial across various sectors. However, due to limitations in computational resources and the complexity of network architectures, many sophisticated semantic segmentation models struggle with efficiency in real-world applications, leading to an interest in developing lightweight model like borders. These models often employ a dual-branch structure, which balances processing speed and performance effectively.
View Article and Find Full Text PDFPlant Dis
January 2025
Guangdong Academy of Agricultural Sciences, Crop Research Institute, Wushan Road, Tianhe District, guangzhou, China, 510640;
Sweet potato ( (L.) Lam) is a major food crop that is cultivated in southern China (Huang et al. 2020).
View Article and Find Full Text PDFCytometry A
December 2024
Laboratory of Hyperspectral Imaging of Surgical Targets, Center of Excellence, L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan, Armenia.
Identifying factors that contribute to the transition to the dilated phase in cardiac ischemia is a critical challenge in heart failure treatment. Currently, no effective therapies exist for this ischemic complication, and the mechanisms driving left ventricular dilatation during chronic post-infarction remodeling remain poorly understood. One potential pathological process leading to ventricular dilatation involves specific compensatory rearrangements in the border zone adjacent to the infarct, which isolates the intact myocardium from inflammation at the scar edge.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda, Japan.
This study aimed to develop polyvinyl alcohol (PVA) and kappa-carrageenan (κCA) biocomposite films using a Pickering emulsion technique for wound care applications. Juniper essential oil and modified sepiolite were incorporated to enhance functionality, with films prepared via solvent casting and characterized for structural, thermal, and mechanical properties. The PCOS-2 film exhibited the highest mechanical performance, with Young's modulus of 6.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Nanotechnology Group, USAL-Nanolab, Departamento de Física Fundamental, Universidad de Salamanca (USAL), E-37008 Salamanca, Spain.
The ability to manufacture complex 3D structures with nanometer-scale resolution, such as Fresnel Zone Plates (FZPs), is crucial to achieve state-of-the-art control in X-ray sources for use in a diverse range of cutting-edge applications. This study demonstrates a novel approach combining Electron Beam Lithography (EBL) and cryoetching to produce silicon-based FZP prototypes as a test bench to assess the strong points and limitations of this fabrication method. Through this method, we obtained FZPs with 100 zones, a diameter of 20 µm, and an outermost zone width of 50 nm, resulting in a high aspect ratio that is suitable for use across a range of photon energies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!