Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the biggest obstacles to developing better zeolite-based catalysts is the lack of methods for quantitatively locating light heteroatoms on the T-sites in zeolites. Titanium silicalite-1 (TS-1) is a Ti-bearing zeolite-type catalyst commonly used in partial oxidation reactions with HO, such as aromatic hydroxylation and olefin epoxidation. The reaction mechanism is controlled by the configuration of titanium sites replacing silicon in the zeolite framework, but these sites remain unknown, hindering a fundamental understanding of the reaction. This study quantitatively determines heteroatoms within the zeolite-type framework using anomalous X-ray powder diffraction (AXRD) and the changes in the titanium X-ray scattering factor near the Ti K-edge (4.96 keV). Two TS-1 samples, each with approximately 2 Ti atoms per unit cell, were examined. Half of the titanium atoms are primarily split between sites T3 and T9, with the remainder dispersed among various T-sites within both MFI-type frameworks. One structure showed significant non-framework titanium in the micropores of a more distorted lattice. In both samples, isolated titanium atoms were more prevalent than dinuclear species, which could only potentially arise at site T9, but with a significant energy penalty and were not detected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377426 | PMC |
http://dx.doi.org/10.1038/s41467-024-51788-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!