3dRNA/DNA: 3D Structure Prediction from RNA to DNA.

J Mol Biol

Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China. Electronic address:

Published: September 2024

There is an increasing need for determining 3D structures of DNAs, e.g., for increasing the efficiency of DNA aptamer selection. Recently, we have proposed a computational method of 3D structure prediction of DNAs, called 3dDNA, which has been integrated into our original web server 3dRNA, now renamed 3dRNA/DNA (http://biophy.hust.edu.cn/new/3dRNA). Currently, 3dDNA can only output the predicted DNA 3D structures for users but cannot rank them as an energy function for assessing DNA 3D structures is still lacking. Here, we first provide a brief introduction to 3dDNA and then introduce a new energy function, 3dDNAscore, for the assessment of DNA 3D structures. 3dDNAscore is an all-atom knowledge-based potential by integrating 86 atomic types from nucleic acids. Benchmarks demonstrate that 3dDNAscore can effectively identify near-native structures from the decoys generated by 3dDNA, thus enhancing the completeness of 3dDNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2024.168742DOI Listing

Publication Analysis

Top Keywords

dna structures
12
structure prediction
8
energy function
8
dna
5
structures
5
3ddna
5
3drna/dna structure
4
prediction rna
4
rna dna
4
dna increasing
4

Similar Publications

Efficient and Rapid Enrichment of Extracellular Vesicles Using DNA Nanotechnology-Enabled Synthetic Nano-Glue.

Anal Chem

January 2025

The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.

Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.

View Article and Find Full Text PDF

Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three Ru complexes - of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of through a single-crystal X-ray diffraction study. The solution stability of - was tested using conventional techniques such as UV-vis and HRMS.

View Article and Find Full Text PDF

UBE2N protein belongs to the UE2s family and plays a crucial role in DNA repair, making it an exciting target for the development of innovative anticancer therapies. With the aim of discovering UBE2N inhibitors (UBE2Ni), this perspective seeks to review and provide elements to guide the design of new compounds. We propose a chemoinformatic structural analysis of the protein and its areas of interaction with its different partners.

View Article and Find Full Text PDF

The Evolution of Nucleic Acid Nanotechnology: From DNA Assembly to DNA-Encoded Library.

Small Methods

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.

Deoxyribonucleic acid (DNA), a fundamental biomacromolecule in living organisms, serves as the carrier of genetic information. Beyond its role in encoding biological functions, DNA's inherent ability to hybridize through base pairing has opened new avenues for its application in biological sciences. This review introduces DNA nanotechnology and DNA-encoded library (DEL), and highlights their shared design principles related to DNA assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!