XGRm: A Web Server for Interpreting Mouse Summary-level Genomic Data.

J Mol Biol

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:

Published: September 2024

We introduce XGR-model (or XGRm), a web server made accessible at http://www.xgrm.pro, with the aim of meeting the increasing demand for effectively interpreting summary-level genomic data in model organisms. Currently, it hosts two enrichment analysers and two subnetwork analysers to support enrichment and subnetwork analyses for user-input mouse genomic data, whether gene-centric or genomic region-centric. The enrichment analysers identify ontology term enrichments for input genes (GElyser) or for genes linked from input genomic regions (RElyser). The subnetwork analysers rely on our previously established network algorithm to identify gene subnetworks from input gene-centric summary data (GSlyser) or from input region-centric summary data (RSlyser), leveraging network information about either functional interactions or pathway-derived interactions. Collectively, XGRm offers an all-in-one solution for gaining systems biology insights into summary-level genomic data in mice, underpinned by our commitment to regular updates as well as natural extensions to other model organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2024.168705DOI Listing

Publication Analysis

Top Keywords

genomic data
16
summary-level genomic
12
xgrm web
8
web server
8
model organisms
8
enrichment analysers
8
subnetwork analysers
8
summary data
8
genomic
6
data
6

Similar Publications

Introduction: Varenicline is an α4β2 nicotinic acetylcholine receptor partial agonist with the highest therapeutic efficacy of any pharmacological smoking cessation aid and a 12-month cessation rate of 26%. Genetic variation may be associated with varenicline response, but to date no genome-wide association studies of varenicline response have been published.

Methods: In this study, we investigated the genetic contribution to varenicline effectiveness using two electronic health record-derived phenotypes.

View Article and Find Full Text PDF

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses.

View Article and Find Full Text PDF

Advances and applications in single-cell and spatial genomics.

Sci China Life Sci

December 2024

Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.

The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.

View Article and Find Full Text PDF

Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!