Co-transport of citrate-modified biochar nanoparticles and released plant-available silicon in saturated porous media: Effect of LMWOAs and solution chemistry.

Chemosphere

Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China. Electronic address:

Published: October 2024

Citrate-modified biochar nanoparticles (CBCNPs) represent a promising amendment with plant-available silicon (PASi) releasing capacity. However, the co-transport behavior with released PASi remain poorly understood. This study investigated their co-transport in saturated porous media under various solution chemistry and low molecular weight organic acids (LMWOAs). Experimental and two-site kinetic model results revealed that higher ionic strength caused favorable aggregation and size-selective, hindering CBCNPs transport. Divalent Ca ions retained CBCNPs more effectively than K due to stronger charge screening and cation bridging. The pH buffering capacity of CBCNPs resulted in consistent transport behavior across a broad pH range (4-8). XDLVO calculation clarified the impact mechanisms of IS, ion types and pH on CBCNPs transport. Furthermore, LMWOAs exhibited a time-dependent blocking effect on CBCNPs transport. Oxalic acid (OA) and citric acid (CA) facilitated CBCNPs transport though mechanisms beyond XDLVO, including steric hindrance, competitive adsorption, and surface hydrophilicity. The presence of LMWOAs significantly hindered PASi co-transport, with the inhibitory effect ranked as acetic acid (AA) ≈ CA > OA > absence of organic acids. The inhibition is attributed to the blocking effect and formation of Si-organic acid complexes, as evidenced by breakthrough curves and density functional theory calculations. This study provides novel insights into the co-transport of CBCNPs with released PASi through mutual mechanisms, indicating both potential environmental benefits and risks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143259DOI Listing

Publication Analysis

Top Keywords

cbcnps transport
16
citrate-modified biochar
8
biochar nanoparticles
8
plant-available silicon
8
saturated porous
8
porous media
8
solution chemistry
8
cbcnps
8
released pasi
8
organic acids
8

Similar Publications

Co-transport of citrate-modified biochar nanoparticles and released plant-available silicon in saturated porous media: Effect of LMWOAs and solution chemistry.

Chemosphere

October 2024

Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China. Electronic address:

Citrate-modified biochar nanoparticles (CBCNPs) represent a promising amendment with plant-available silicon (PASi) releasing capacity. However, the co-transport behavior with released PASi remain poorly understood. This study investigated their co-transport in saturated porous media under various solution chemistry and low molecular weight organic acids (LMWOAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!