Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Mundaú lagoon in Maceió (Alagoas, Brazil) is a crucial resource for the local population, particularly fishing communities. Recent studies have revealed potential toxic metal contamination in the lagoon, particularly with mercury (Hg) levels exceeding the maximum regulated values. This inorganic contaminant may be impacting the health of fishermen and the local population. In this context, metabolomics, a study of small-molecule metabolites, can offer insights into the physiological impact of environmental contamination on humans. Thus, volunteers from the control and exposed groups were selected, considering the main exposure criteria primarily defined by their proximity and interaction with the lagoon. Blood and urine samples were collected from the volunteers and subjected to analysis using NMR spectroscopy. The data underwent Principal Component Analysis (PCA) and Orthogonal Partial Least-Squares Discriminant Analysis (OPLS-DA) based on metabolic patterns to establish group discrimination or identification. Metabolic pathways were assessed through enrichment analysis. The study revealed several metabolic disturbances in the exposed group's urine and plasma samples compared to control group. Noteworthy findings included arginine and proline metabolism disruptions, indicative of ammonia recycling and urea cycle impairment. These changes suggest compromised ammonia detoxification in the exposed group. Disturbances in the tricarboxylic acid (TCA) cycle and the transfer of acetyl groups into mitochondria suggested systemic metabolic stress in energy metabolism. Furthermore, elevated carnitine and ketone levels may indicate compensatory responses to low TCA cycle activity. Alterations in glutamate and glutathione metabolism and imbalances in glutathione levels indicate oxidative stress and impaired detoxification. This study highlights significant metabolic changes in fishermen exposed to contaminated environments, which can affect various metabolic pathways, including energy metabolism and antioxidant processes, potentially making individuals more vulnerable to the adverse effects of environmental contaminants. Finally, this work highlights insights into the relationship between environmental contamination and metabolic pathways, particularly in regions with limited studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143261 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!