Background: The molecular biology mechanisms underlying postoperative cognitive dysfunction (POCD) remain unclear, resulting in a lack of specific therapeutic targets and limited clinical treatment options. The NLRP3 pyroptotic pathway, induced by neuroinflammation, is known to promote the development of POCD. Research has shown that lncRNA MEG3 exacerbates cell pyroptosis in various neurological injuries, though the precise mechanism remains to be investigated.
Methods: In vitro and in vivo models of POCD were established through treatment with sevoflurane. Gene and protein expression were investigated using qRT-PCR, Western blot analysis, ELISA, and histological staining. Additionally, cell viability and injury were assessed through CCK-8 and LDH assays. Hippocampal-dependent memory and cognitive abilities were evaluated using the Morris Water Maze (MWM) test. Furthermore, the interactions between MEG3 and EZH2/YTHDC1 were validated through RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP).
Results: Our findings reveal that sevoflurane significantly reduced MEG3 and pyroptosis-related proteins in mice. The overexpression of MEG3 protected mice against sevoflurane-induced cognitive dysfunction and reversed sevoflurane-induced pyroptosis in hippocampal neurons. MEG3 induced the downregulation of NLRP3 expression and reduced mRNA stability through its interaction with EZH2/YTHDC1.
Conclusion: In conclusion, our study elucidates that MEG3 inhibits the NLRP3 inflammasome and hippocampal neuron pyroptosis through the recruitment of EZH2/YTHDC1. These findings shed light on the underlying mechanism of MEG3 in the regulation of POCD and suggest that MEG3 could serve as a potential therapeutic target for the treatment of POCD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2024.111060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!