Network-wide risk convergence in gene co-expression identifies reproducible genetic hubs of schizophrenia risk.

Neuron

Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:

Published: November 2024

The omnigenic model posits that genetic risk for traits with complex heritability involves cumulative effects of peripheral genes on mechanistic "core genes," suggesting that in a network of genes, those closer to clusters including core genes should have higher GWAS signals. In gene co-expression networks, we confirmed that GWAS signals accumulate in genes more connected to risk-enriched gene clusters, highlighting across-network risk convergence. This was strongest in adult psychiatric disorders, especially schizophrenia (SCZ), spanning 70% of network genes, suggestive of super-polygenic architecture. In snRNA-seq cell type networks, SCZ risk convergence was strongest in L2/L3 excitatory neurons. We prioritized genes most connected to SCZ-GWAS genes, which showed robust association to a CRISPRa measure of PGC3 regulation and were consistently identified across several brain regions. Several genes, including dopamine-associated ones, were prioritized specifically in the striatum. This strategy thus retrieves current drug targets and can be used to prioritize other potential drug targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2024.08.005DOI Listing

Publication Analysis

Top Keywords

risk convergence
12
gene co-expression
8
genes
8
network genes
8
gwas signals
8
genes connected
8
convergence strongest
8
drug targets
8
network-wide risk
4
convergence gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!