Marine toxins in environment: Recent updates on depuration techniques.

Ecotoxicol Environ Saf

Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China. Electronic address:

Published: October 2024

AI Article Synopsis

  • Marine toxins are a major safety concern, causing human poisoning and economic losses in seafood regions.
  • Effective and affordable methods are needed to control these toxins to reduce their negative impacts.
  • The research reviewed marine toxin toxicity, summarized depuration technologies, and compared their pros and cons while suggesting future development strategies.

Article Abstract

Marine toxins pose a significant safety risk, leading to human intoxications and causing substantial economic losses in seafood-producing regions. The development of rapid, cost-effective, efficient, and reliable approaches for the containment of these substances is therefore crucial in order to mitigate the adverse impact of marine toxins. This research conducted a comprehensive review on the toxicity and influencing factors of marine toxins production. Additionally, depuration technologies, including adsorption, advanced oxidation processes, biodegradation, heating treatment, temporary maintenance and purification, and drug inhibition, were systematically summarized. The study also provided a comparative analysis of the advantages and disadvantages of various depuration technologies and proposed strategies for future development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.116990DOI Listing

Publication Analysis

Top Keywords

marine toxins
16
depuration technologies
8
marine
4
toxins environment
4
environment updates
4
updates depuration
4
depuration techniques
4
techniques marine
4
toxins pose
4
pose safety
4

Similar Publications

Mechanisms by which Ganglioside GM1, a specific type of glycosphingolipid, ameliorates BMAA-induced neurotoxicity in early-life stage of zebrafish embryos.

Food Res Int

January 2025

State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.

The neurotoxin β-methylamino-L-alanine (BMAA) produced by cyanobacteria is widely present in foods and dietary supplements, posing a significant threat to human health. Ganglioside GM1 (GM1) has demonstrated potential for treating neurodegenerative diseases; however, its ability to prevent BMAA-induced neurotoxicity remains uncertain. In this study, zebrafish embryos were treated with Ganglioside GM1 to investigate its neuroprotective effects against BMAA exposure and the underlying mechanisms.

View Article and Find Full Text PDF

The Winam Gulf in the Kenyan region of Lake Victoria experiences prolific, year-round cyanobacterial harmful algal blooms (cyanoHABs) which pose threats to human, livestock, and ecosystem health. To our knowledge, there is limited molecular research on the gulf's cyanoHABs, and thus, the strategies employed for survival and proliferation by toxigenic cyanobacteria in this region remain largely unexplored. Here, we used metagenomics to analyze the Winam Gulf's cyanobacterial composition, function, and biosynthetic potential.

View Article and Find Full Text PDF

In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance among demyelination, neurodegeneration, and myelin repair. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the lack of therapies aimed at promoting remyelination and slowing disease progression for individuals with MS.

View Article and Find Full Text PDF

Biosensors for Seafood Safety Control-A Review.

Micromachines (Basel)

December 2024

BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

The increased demand for consuming seafood has made seafood production undergo a rapid period of growth. However, seafood has a high risk of contamination from harmful microorganisms and marine toxins which can cause health problems for humans consuming it. Concerning this issue, monitoring seafood safety has become a center of attention for researchers, and developing effective methods for detecting contamination in seafood has become a critical research field.

View Article and Find Full Text PDF

In Silico Conotoxin Studies: Progress and Prospects.

Molecules

December 2024

Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.

Cone snails of the genus have evolved to produce structurally distinct and functionally diverse venom peptides for defensive and predatory purposes. This nature-devised delicacy enlightened drug discovery and for decades, the bioactive cone snail venom peptides, known as conotoxins, have been widely explored for their therapeutic potential, yet we know very little about them. With the augmentation of computational algorithms from the realms of bioinformatics and machine learning, in silico strategies have made substantial contributions to facilitate conotoxin studies although still with certain limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!