To facilitate the development of novel agricultural succinate dehydrogenase inhibitor (SDHI) fungicides, we synthesized three series of derivatives by introducing phenyl pyrazole fragments into the structure of pyrazol-4-yl amides. The results of the bioactivity assay showed that most of the target compounds possessed varying degrees of inhibitory activity against the tested fungi. At a concentration of 100 mg/L, the compound B8 exhibited effective protective activity against S. sclerotiorum in vivo. Molecular docking analysis and succinate dehydrogenase (SDH) inhibition assay indicated that B8 was not a potential SDHI. The preliminary antifungal mechanism of studies showed that B8 induced a large amount of reactive oxygen species (ROS) and severe lipid peroxidation damage in S. sclerotiorum mycelium, resulting in mycelial rupture and disruption of the integrity of the cell membrane and leakage of soluble proteins, soluble sugars and nucleic acids. Further transcriptome analysis showed that compound B8 blocked various metabolic pathways by downregulating the differentially expressed genes (DEGs) catalase, disrupting hydrogen peroxide hydrolysis, accelerating membrane oxidative damage, and upregulating neutral ceramidase, accelerating sphingolipid metabolism to disrupt cell membrane structure and cell proliferation and differentiation, potentially accelerating cell death. The above results indicated that the potential target of these dis-pyrazole carboxamide derivatives may be the cell membrane of pathogenic fungi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2024.107779 | DOI Listing |
Front Biosci (Landmark Ed)
December 2024
Department of Reproductive Medicine, Dongying People's Hospital, 257091 Dongying, Shandong, China.
Background: Endometriosis patients exhibit a cancer-like glycolytic phenotype. The pyruvate kinase M2 (PKM2)/hypoxia-inducible factor-1 alpha (HIF-1α) axis plays important roles in glycolysis-related diseases, but its role in patients with endometrial polyps (EPs) combined with endometriosis has not been validated.
Methods: EP samples were collected from patients with and without endometriosis.
Front Biosci (Landmark Ed)
December 2024
Research Centre for Medical Genetics, 115522 Moscow, Russia.
Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.
View Article and Find Full Text PDFJACS Au
December 2024
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, 201804, Shanghai, China.
For the aim of achieving the carbon-free energy scenario, green hydrogen (H) with non-CO emission and high energy density is regarded as a potential alternative to traditional fossil fuels. Over the last decades, significant breakthroughs have been realized on the alkaline hydrogen evolution reaction (HER), which is a fundamental advancement and efficient process to generate high-purity H in the laboratory. Based on this, the development of the practical industry-oriented anion exchange membrane water electrolyzer (AEMWE) is on the rise, showing competitiveness with the incumbent megawatt-scale H production technologies.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium.
Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!