Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Copper(II) complexes are very promising candidates for platinum-based anticancer agents. Herein, three Cu (II) complexes (1-3) containing 1,8-naphthalimide ligands were synthesized and characterized by FT-IR, elemental analysis, ESI-MS and single crystal X-ray diffraction (complex 3). In addition, a control compound (complex 4) without 1,8-naphthalimide ligand was synthesized and characterized. The in vitro anticancer activity of the synthesized complexes against five cancer cell lines and one normal cell line was evaluated by MTS assay. The results displayed the antitumor activity of complexes 1-3 was controlled by the aliphatic chain length of ligands, their cytotoxicity was in the order 3 > 2 > 1, giving the IC values ranging from 2.874 ± 0.155 μM to 31.47 ± 0.29 μM against five cancer cell lines. Complex 4 showed less activity in comparison with complex 1-3. Notably, complexes 1-3 displayed much higher selectivity (SI = 2.65 to 10.16) compared to complex 4 (SI = 1.0), indicated that the introduction of 1,8-naphthalimide group not only increased the activity of this series of compounds but also enhanced their specific selectivity to cancer cells. Compound 3 induced apoptosis in cancer cells and blocked the S-phase and G2/M of cancer cells. The interaction with DNA of complexes 3 and 4 was studied by UV/Vis spectroscopic titrations, competitive DNA-binding experiment, viscometry and CD spectra. The results showed that complex 3 interacted with DNA in an intercalating mode, but the interaction mode of compound 4 with DNA was electrostatic interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2024.112721 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!