Cystic fibrosis (CF) is a genetic disease caused by mutations in the (cystic fibrosis transmembrane conductance regulator) gene. Although CF is a multiorgan disease, the leading causes of morbidity and mortality are related to progressive lung disease. Current understanding of the effects of the broad spectrum of mutations on CFTR function has allowed for the development of CFTR modulator therapies. Despite the remarkable impact that these therapies have had, there remains a significant proportion of people with CF (estimated at 10-15% of the global CF population) who are genetically ineligible for, or intolerant of, current CFTR-targeting therapies and whose therapeutic needs remain unmet. Inhaled genetic therapies offer the prospect of addressing the unmet pulmonary treatment need in people with CF, with several approaches, including gene addition therapy (the focus of this review), RNA-based therapies, antisense oligonucleotides, and gene editing, being explored. Various nonviral and viral vectors have been investigated for CF gene addition therapy for mutation-agnostic restoration of CFTR function in the lungs. Lentiviral vectors offer the prospect of highly efficient and long-lasting gene expression, and the potential to be safely and, in contrast to other commonly used viral vectors, effectively redosed. A third-generation lentiviral vector pseudotyped with Sendai virus F and HN envelope proteins (rSIV.F/HN) has been developed for the treatment of CF. Promising preclinical results support the progression of this vector carrying a full-length transgene (BI 3720931) into a first-in-human clinical trial expected to begin in 2024.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11716034 | PMC |
http://dx.doi.org/10.1164/rccm.202402-0389CI | DOI Listing |
Glycoconj J
January 2025
Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.
View Article and Find Full Text PDFJ Paediatr Child Health
January 2025
Paediatric Respiratory and Sleep Department, Women's and Children's Hospital, Adelaide, South Australia, Australia.
Background: Children with cystic fibrosis are more likely to become severely unwell with influenza-associated illness compared to children without chronic lung disease. The provision of accessible influenza vaccinations is essential in the prevention of infection.
Objectives: To describe the prevalence of the influenza vaccine uptake in children with cystic fibrosis from 2016 to 2020 at a single tertiary paediatric hospital site and determine if the COVID pandemic of 2020 and the introduction of telehealth encounters affected the vaccine uptake.
Mol Ther
January 2025
Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy. Electronic address:
Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.
View Article and Find Full Text PDFNutrients
December 2024
Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.
Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.
Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!