Plastic additive-related chemicals, particularly in polyvinyl chloride (PVC) plastics, have become a key issue in plastic pollution. Although addressing plastic pollution through the life-cycle approach is crucial, the environmental impacts of typical plastic additive-related chemicals in PVC plastics during the cradle-to-gate stage remain unexplored. Consequently, managing the life-cycle environmental impacts of these additives remains challenging. Herein, the environmental impacts of 23 typical plastic additive-related chemicals and six PVC plastic products were evaluated throughout the cradle-to-gate life-cycle stage using a life cycle assessment-material flow analysis (LCA-MFA) coupled model. The results indicate that plastic additives significantly contribute to the environmental impacts of PVC plastic products across various end point indicators, ranging from 8.7 to 40.6%. Additionally, scenario analysis (SA) reveals that conventional strategies for addressing plastic pollution may not be highly effective in mitigating the environmental impacts associated with plastic additives. Specifically, compared to primary polymers, these additives exhibit 4 to 13% lower mitigation potential under the same policy scenarios. However, technical adjustment strategies targeting additives show a mitigation potential of 12 to 39%, suggesting that guiding the plastic additive industry toward green transformation is a key strategy for reducing environmental impacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c00449 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Laboratory of Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi 394650 Surat Gujarat India. Electronic address:
A single molecule sensor for several analytes is indeed desired by the scientists around the world due to obvious advantages. In this report we present a new class of Lophine incorporated azo dyes that has capacity of differential colorimetric detection of several metal ions. Interestingly the sensor was found to have pH dependent selective response towards several metals.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:
With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:
To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.
View Article and Find Full Text PDFWater Res
January 2025
Hull International Fisheries Institute, School of Natural Sciences, University of Hull, Hull, UK.
Globally, fish have been severely affected by the widespread, chronic degradation of fresh waters, with a substantial proportion of species declining in abundance or range in recent decades. This has especially been the case in densely populated countries with an industrial heritage and intensive agriculture, where the majority of river catchments have been affected by deteriorations in water quality and changes in land use. This study used a spatially and temporally extensive dataset, encompassing 16,124 surveys at 1180 sites representing a wide range of river typologies and pressures, to examine changes in the fish populations of England's rivers over four decades (1980s-2010s).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!