Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thanks to advancements in artificial intelligence and brain-computer interface (BCI) research, there has been increasing attention towards emotion recognition techniques based on electro encephalogram (EEG) recently. The complexity of EEG data poses a challenge when it comes to accurately classifying emotions by integrating time, frequency, and spatial domain features. To address this challenge, this paper proposes a fusion model called DC-ASTGCN, which combines the strengths of deep convolutional neural network (DCNN) and adaptive spatiotemporal graphic convolutional neural network (ASTGCN) to comprehensively analyze and understand EEG signals. The DCNN focuses on extracting frequency-domain and local spatial features from EEG signals to identify brain region activity patterns, while the ASTGCN, with its spatiotemporal attention mechanism and adaptive brain topology layer, reveals the functional connectivity features between brain regions in different emotional states. This integration significantly enhances the model's ability to understand and recognize emotional states. Extensive experiments conducted on the DEAP and SEED datasets demonstrate that the DC-ASTGCN model outperforms existing state-of the-art methods in terms of emotion recognition accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3449083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!