A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DC-ASTGCN: EEG Emotion Recognition Based on Fusion Deep Convolutional and Adaptive Spatio-temporal Graph Convolutional Networks. | LitMetric

Thanks to advancements in artificial intelligence and brain-computer interface (BCI) research, there has been increasing attention towards emotion recognition techniques based on electro encephalogram (EEG) recently. The complexity of EEG data poses a challenge when it comes to accurately classifying emotions by integrating time, frequency, and spatial domain features. To address this challenge, this paper proposes a fusion model called DC-ASTGCN, which combines the strengths of deep convolutional neural network (DCNN) and adaptive spatiotemporal graphic convolutional neural network (ASTGCN) to comprehensively analyze and understand EEG signals. The DCNN focuses on extracting frequency-domain and local spatial features from EEG signals to identify brain region activity patterns, while the ASTGCN, with its spatiotemporal attention mechanism and adaptive brain topology layer, reveals the functional connectivity features between brain regions in different emotional states. This integration significantly enhances the model's ability to understand and recognize emotional states. Extensive experiments conducted on the DEAP and SEED datasets demonstrate that the DC-ASTGCN model outperforms existing state-of the-art methods in terms of emotion recognition accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3449083DOI Listing

Publication Analysis

Top Keywords

emotion recognition
12
deep convolutional
8
convolutional neural
8
neural network
8
eeg signals
8
emotional states
8
dc-astgcn eeg
4
eeg emotion
4
recognition based
4
based fusion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!