Protocol for genome-scale differential flux analysis to interrogate metabolic differences from gene expression data.

STAR Protoc

School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India. Electronic address:

Published: September 2024

Deciphering the functional differences between diseased and healthy cells requires understanding the alterations in biochemical flux patterns. We present a genome-scale differential flux analysis (GS-DFA) protocol to elucidate these metabolic disparities by integrating condition-specific gene expression data into the human genome-scale metabolic model (humanGEM). In this protocol, we describe the steps to normalize and integrate data into the humanGEM and analyze differential flux across the biochemical network between diseased and healthy cells. For complete details on the use and execution of this protocol, please refer to Nanda et al..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404131PMC
http://dx.doi.org/10.1016/j.xpro.2024.103291DOI Listing

Publication Analysis

Top Keywords

differential flux
12
genome-scale differential
8
flux analysis
8
gene expression
8
expression data
8
diseased healthy
8
healthy cells
8
protocol
4
protocol genome-scale
4
flux
4

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

The Role of Autophagy in Copper-Induced Apoptosis and Developmental Neurotoxicity in SH-SY5Y Cells.

Toxics

January 2025

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

Copper (Cu) is a global environmental pollutant that poses a serious threat to humans and ecosystems. Copper induces developmental neurotoxicity, but the underlying molecular mechanisms are unknown. Neurons are nonrenewable, and they are unable to mitigate the excessive accumulation of pathological proteins and organelles in cells, which can be ameliorated by autophagic degradation.

View Article and Find Full Text PDF

Inhibiting Autophagy by Chemicals During SCAPs Osteodifferentiation Elicits Disorganized Mineralization, While the Knock-Out of Genes Leads to Cell Adaptation.

Cells

January 2025

The Laboratory for the Bioengineering of Tissues (BioTis U1026), National Institute of Health and Medical Research (INSERM), Université de Bordeaux, F-33000 Bordeaux, France.

SCAPs (Stem Cells from Apical Papilla), derived from the apex of forming wisdom teeth, extracted from teenagers for orthodontic reasons, belong to the MSCs (Mesenchymal Stromal Cells) family. They have multipotent differentiation capabilities and are a potentially powerful model for investigating strategies of clinical cell therapies. Since autophagy-a regulated self-eating process-was proposed to be essential in osteogenesis, we investigated its involvement in the SCAP model.

View Article and Find Full Text PDF

Magnesium ions regulate the Warburg effect to promote the differentiation of enteric neural crest cells into neurons.

Stem Cell Res Ther

January 2025

Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.

Background: Understanding how enteric neural crest cells (ENCCs) differentiate into neurons is crucial for neurogenesis therapy and gastrointestinal disease research. This study explores how magnesium ions regulate the glycolytic pathway to enhance ENCCs differentiation into neurons.

Materials And Methods: We used polymerase chain reaction, western blot, immunofluorescence, and multielectrode array techniques to assess magnesium ions' impact on ENCCs differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!