Metal particles incorporated into polymer matrices in various forms and geometries are attractive material platforms for promoting wound healing and preventing infections. However, the fate of these metal particles and their degraded products in the tissue environment are still unknown, as both can produce cytotoxic effects and promote unwanted wound reactions. In this study, we develop biodegradable fibrous biomaterials embedded with metal particles that have an immune activation functions. Initially, biodegradable zinc (Zn) nanoparticles were modified with zein (G), a protein derived from corn. The zein-coated zinc particles (Z-G) were then embedded in polycaprolactone (P) fibers at different weight ratios to create fibrous biomaterials via electrospinning, which were subsequently analyzed for potential wound healing applications. We performed multimodal evaluations of the fibrous scaffolds, examining physicochemical properties such as fiber morphology, mechanical strength, hydrophilicity, degradation, and release of zinc ions (Zn), as well as biological properties, including in vitro cell culture studies. We provide evidence that the integration of 2.4 wt % of Z-G particles in polycaprolactone (PCL) nanofibrous scaffolds improved its physicochemical and biological functions. The in vitro cellular response of the scaffolds was evaluated using a series of cytotoxicity assays and immunocytochemistry analyses with three different cell types: mouse-derived fibroblast cell lines (NIH/3T3), human dermal fibroblasts (HDFn), and human umbilical vein endothelial cells (HUVECs). The composite fibrous scaffold exhibited robust activation and proliferation of NIH/3T3 and HDFn cells, along with a significant angiogenic potential in HUVECs. Immunocytochemistry confirmed elevated expression of vimentin and α-smooth muscle actin (α-SMA), suggesting that NIH/3T3 and Haden cells were highly differentiated into myofibroblasts. Additionally, the increased expression of CD31 and VE-cadherin in HUVECs suggests that the scaffold supports tube formation, thereby enhancing neovascularization and promoting an effective immune response. Overall, our findings demonstrate the regenerative potential of the self-enhanced Zn hemostatic bioscaffolds, which deliver both Zn ions and zein proteins to nourish cells. This capability not only modulates cellular activities but also contributes to tissue repair and remodeling, making the scaffolds suitable for wound repair and various bioengineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c13458DOI Listing

Publication Analysis

Top Keywords

wound healing
12
metal particles
12
fibrous biomaterials
8
fibrous
5
wound
5
particles
5
zein-coated metal
4
metal particles-incorporated
4
particles-incorporated nanofibers
4
nanofibers potent
4

Similar Publications

Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats.

Stem Cell Res Ther

December 2024

National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.

Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.

Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.

View Article and Find Full Text PDF

TIMP-2 Promotes Wound Healing by Suppressing Matrix Metalloproteinases and Inflammatory Cytokines in Corneal Epithelial Cells.

Am J Pathol

December 2024

Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA. Electronic address:

Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix (ECM) remodeling for maintaining homeostasis and promoting cell migration and proliferation. Pathological conditions can alter TIMP homeostasis and aggravate disease progression. The roles of TIMPs have been studied in tissue-related disorders; however, their contributions to tissue repair during corneal injury are undefined.

View Article and Find Full Text PDF

Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing.

View Article and Find Full Text PDF

Exploring the ncRNA landscape in exosomes: Insights into wound healing mechanisms and therapeutic applications.

Int J Biol Macromol

December 2024

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India. Electronic address:

Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing.

View Article and Find Full Text PDF

Photothermal-manipulatable shape memory polyacrylamide/gelatin Janus hydrogel with drug carrier array for invasive wound closure and responsive drug release.

Int J Biol Macromol

December 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:

Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!