PANoptosis, a burgeoning area of research, is a unique type of programmed cell death typified by pyroptosis, apoptosis, and necroptosis, yet it defies singular classification by any one mode of death. The assembly and activation of PANoptosomes are pivotal processes in PANoptosis, with several PANoptosomes already identified. Linkages between PANoptosis and the pathophysiology of various systemic illnesses are established, with increasing recognition of its association with oral ailments. This paper aims to deepen understanding by conducting a comprehensive analysis of the molecular pathways driving PANoptosis and exploring its potential implications in oral diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-024-09901-y | DOI Listing |
Background: DYRK1A overexpression, common in neurodegenerative diseases like Alzheimer's (AD), contributes to neurofibrillary tangles via Tau protein hyperphosphorylation and amyloid plaque formation, key AD hallmarks. Therefore, DYRK1A has been regarded as a novel target for neurodegenerative diseases. However, developing DYRK1A selective inhibitors has been a difficult challenge due to the highly conserved ATP-binding site of protein kinases, particularly among the CMGC family.
View Article and Find Full Text PDFBackground: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFBackground: Alzheimer's disease is the most dreaded multifactorial neurological illness for which there is currently no known treatment. Although the exact cause of AD is still unknown, several factors related to lifestyle, genetics, and environment are known to have a significant role in the disease's development. Alzheimer's disease is characterized by neuronal loss, neurofibrillary tangles, and senile plaques.
View Article and Find Full Text PDFBackground: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Alzheimer's disease (AD) is a progressive and multifactorial neurodegenerative disease that still has no cure. Different pathological processes contribute to the disease's development, such as the presence of amyloid beta (Aβ) plaques, neurofibrillary tangles (NFTs), glutamatergic excitotoxicity, oxidative stress, and neuroinflammation. Chalcones are polyphenolic compounds of natural origin with a wide range of biological activities, and emerging studies have reported neurotrophic activity, anti-inflammatory and antioxidant effects, and the inhibition of Aβ aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!