A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Poly(3,4-Ethylenedioxythiophene):Sulfamic Acid Modified Aramid Nanofibers: An Innovative Conductive Polymer With Enhanced Electromagnetic Interference Shielding and Thermoelectric Performance. | LitMetric

The development of alternative conductive polymers for the well-known poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is of great significance for improving the stability in long-term using and high-temperature environments. Herein, an innovative PEDOT:S-ANF aqueous dispersion is successfully prepared by using sulfamic acid (SA) to modified aramid nanofibers (S-ANF) as an alternative dispersant for PSS and the subsequent in situ polymerization of PEDOT. Thanks to the excellent film forming ability and surface negative groups of S-ANF, the PEDOT:S-ANF films show comparable tensile strength and elongation to unmodified PEDOT:ANF. Meanwhile, PEDOT:S-ANF has a high conductivity of 27.87 S cm, which is more than 20 times higher than that of PEDOT:PSS. The film exhibits excellent electromagnetic interference (EMI) shielding and thermoelectric performance, with a shielding effectiveness (SE) of 31.14 dB and a power factor (PF) of 0.43 µW mK. As a substitute for PSS, S-ANF exhibits significant structural and physicochemical properties, resulting in excellent chemical and thermal stability. Even under harsh conditions such as immersing to 0.1 M HCl, 0.1 M NaOH, and 3.5% NaCl solution, or high temperature conditions, the PEDOT:S-ANF films still maintain exceptional EMI shielding performance. Therefore, this multifunctional conductive polymer exhibits enormous potential and even proves its reliability in extreme situations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202405400DOI Listing

Publication Analysis

Top Keywords

acid modified
8
modified aramid
8
aramid nanofibers
8
conductive polymer
8
electromagnetic interference
8
shielding thermoelectric
8
thermoelectric performance
8
pedots-anf films
8
emi shielding
8
poly34-ethylenedioxythiophenesulfamic acid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!