Unlabelled: The trait of ionizing radiation (IR) tolerance is variable between bacterium, with species succumbing to acute doses as low as 60 Gy and extremophiles able to survive doses exceeding 10,000 Gy. While survival screens have identified multiple highly radioresistant bacteria, such systemic searches have not been conducted for IR-sensitive bacteria. The taxonomy-level diversity of IR sensitivity is poorly understood, as are genetic elements that influence IR sensitivity. Using the protein domain (Pfam) frequencies from 61 bacterial species with experimentally determined values (the dose at which only 10% of the population survives), we trained TolRad, a random forest binary classifier, to distinguish between radiosensitive ( < 200 Gy) and radiation-tolerant ( > 200 Gy) bacteria. On untrained species, TolRad had an accuracy of 0.900. We applied TolRad to 152 UniProt-hosted bacterial proteomes associated with the human microbiome, including 37 strains from the ATCC Human Microbiome Collection, and classified 34 species as radiosensitive. Whereas IR-sensitive species ( < 200 Gy) in the training data set had been confined to the phylum , this initial TolRad screen identified radiosensitive bacteria in two additional phyla. We experimentally validated the predicted radiosensitivity of a species from the human microbiome. To demonstrate that TolRad can be applied to metagenome-assembled genomes (MAGs), we tested the accuracy of TolRad on Egg-NOG assembled proteomes (0.965) and partial proteomes. Finally, three collections of MAGs were screened using TolRad, identifying further phyla with radiosensitive species and suggesting that environmental conditions influence the abundance of radiosensitive bacteria.
Importance: Bacterial species have vast genetic diversity, allowing for life in extreme environments and the conduction of complex chemistry. The ability to harness the full potential of bacterial diversity is hampered by the lack of high-throughput experimental or bioinformatic methods for characterizing bacterial traits. Here, we present a computational model that uses -generated genome annotations to classify a bacterium as tolerant of ionizing radiation (IR) or as radiosensitive. This model allows for rapid screening of bacterial communities for low-tolerance species that are of interest for both mechanistic studies into bacterial sensitivity to IR and biomarkers of IR exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466087 | PMC |
http://dx.doi.org/10.1128/spectrum.03838-23 | DOI Listing |
Sci Rep
January 2025
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.
View Article and Find Full Text PDFTrends Biotechnol
January 2025
Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. Electronic address:
Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs).
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, CEP 84030-900, PR, Brazil. Electronic address:
The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.
View Article and Find Full Text PDFSci Total Environ
January 2025
Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.
Carbapenemase-producing Enterobacterales are pathogens classified as a critical priority by the World Health Organization and a burden on human health worldwide. IMI, NmcA, and FRI are under-detected class A carbapenemases that have been reported in the human, animal and environmental compartments, particularly these last 5 years. Bacteria producing these carbapenemases have been mostly identified in digestive carriage screenings, but they are also involved in severe infections, such as bacteremia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!