Pyrene-Based Organic Photoredox Catalysts for Carbon-Carbon Bond-Forming Reactions: Reductive Coupling of Aromatic Carbonyl and Imine Compounds.

Org Lett

School of Food and Nutritional Science, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.

Published: September 2024

Metal-free photoredox catalysts built upon a pyrene core were developed for carbon-carbon bond-forming reactions. Among these catalysts, a pyrene derivative containing a urea moiety effectively facilitated the reductive coupling of aromatic carbonyl and imine compounds under blue LED irradiation. This process provided the corresponding vicinal diols and diamines in good yields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c02845DOI Listing

Publication Analysis

Top Keywords

photoredox catalysts
8
carbon-carbon bond-forming
8
bond-forming reactions
8
reductive coupling
8
coupling aromatic
8
aromatic carbonyl
8
carbonyl imine
8
imine compounds
8
pyrene-based organic
4
organic photoredox
4

Similar Publications

Red-light absorbing photoredox catalysts offer potential advantages for large-scale reactions, expanding the range of usable substrates and facilitating bio-orthogonal applications. While many red-light absorbing/emitting fluorophores have been developed recently, functional red-light absorbing photoredox catalysts are scarce. Many photoredox catalysts rely on long-lived triplet excited states (triplets), which can efficiently engage in single electron transfer (SET) reactions with substrates.

View Article and Find Full Text PDF

The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals.

View Article and Find Full Text PDF

Z-scheme CeO-TiO@CNT (CTC) heterojunction is fabricated using hydrothermal method and evaluated for removing mixed pollutants (MIX-P) from ciprofloxacin (CPF) and textile contaminations. CTC demonstrated ≈99% removal efficiency against MIX-P under solar irradiation of ≈10 lumens. High removal efficiency of CTC is attributed to reduced bandgap (E), 2.

View Article and Find Full Text PDF

The direct functionalization of C-H bonds has revolutionized the field of synthetic organic chemistry by enabling efficient and atom-economical modification of arenes by avoiding prefunctionalization. However, the inherent challenges of inertness and regioselectivity in different C-H bonds, particularly for distal positions, necessitate innovative approaches. In this aspect, photoredox catalysis by utilizing both transition metal and organic photocatalysts has emerged as a powerful tool for addressing these challenges under mild reaction conditions.

View Article and Find Full Text PDF

Using amines in catalytic transfer hydrogenation (TH) is challenging, despite their potential availability as a hydrogen source. Here, we describe a photoredox/nickel-catalyzed TH of alkyne through an intermediary aminoalkyl Ni species. This reaction successfully provided functionalized ()-alkenes, such as (homo)allyl ethers, alcohols, and amides (/ = up to >99:1), and the reaction thus bypasses a limitation of substrate scope in TH using amine and a Lindlar catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!