Effect of Strain Engineering on the Spin State of the Ni-N/C Single-Atom Catalyst and Its Consequence in Electrocatalysis.

ACS Appl Mater Interfaces

School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.

Published: September 2024

Strain engineering is an effective strategy to improve the activity of catalysts, especially for flexible carbon-based materials. Nitrogen-coordinated single atomic metals on a carbon skeleton (M-N/C) are of interest in catalytic electroreduction reactions due to their high activity and atomic utilization. However, the effect of strain on the structure-activity relationship between the electrochemical activity and the electronic and geometric structures of Ni-N/C remains unclear. Here, we found that by applying tensile strain on the Ni-N/C, the spin state of the single atom can be changed from a low-spin to a high-spin state. Moreover, the energy gap between the highest occupied orbital of Ni and the lowest unoccupied molecular orbital of the adsorbed species narrowed. With an increasing strain rate, the catalytic activity of O and CO electroreduction can be improved. Especially for the 2e O reduction, the implicit solvent model, constant-potential method, and microkinetic model were used to verify the positive effect of suitable stretching on the catalytic activity from thermodynamic and kinetic viewpoints. This work can reveal the relationship between strain, spin state, and the catalytic activity of Ni-N/C.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c07953DOI Listing

Publication Analysis

Top Keywords

spin state
12
catalytic activity
12
strain engineering
8
strain
6
activity
6
engineering spin
4
state
4
ni-n/c
4
state ni-n/c
4
ni-n/c single-atom
4

Similar Publications

Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.

View Article and Find Full Text PDF

Localized and Excimer Triplet Electronic States of Naphthalene Dimers: A Computational Study.

Molecules

January 2025

Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy.

We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that both excimer and localized triplet minima exist. In the former, the spin density is delocalized over the two monomers, adopting a face-to-face arrangement with a short inter-molecular distance.

View Article and Find Full Text PDF

In this paper, we review our work on the manipulation of magnetization in ferromagnetic semiconductors (FMSs) using electric-current-induced spin-orbit torque (SOT). Our review focuses on FMS layers from the (Ga,Mn)As zinc-blende family grown by molecular beam epitaxy. We describe the processes used to obtain spin polarization of the current that is required to achieve SOT, and we briefly discuss methods of specimen preparation and of measuring the state of magnetization.

View Article and Find Full Text PDF

Equation for Calculation of Critical Current Density Using the Bean's Model with Self-Consistent Magnetic Units to Prevent Unit Conversion Errors.

Materials (Basel)

January 2025

Laboratory for Heteroepitaxial Growth of Functional Materials & Devices, Department of Chemical & Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260, USA.

This study analyzes the calculation of the critical current density by means of Bean's critical state model, using the equation formulated by Gyorgy et al. and other similar equations derived from it reported in the literature. While estimations of using Bean's model are widely performed, improper use of different equations with different magnetic units and pre-factors leads to confusion and to significant errors in the reported values of .

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!