A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The 8-oxoguanine DNA glycosylase-synaptotagmin 7 pathway increases extracellular vesicle release and promotes tumour metastasis during oxidative stress. | LitMetric

AI Article Synopsis

  • Reactive oxygen species (ROS) are responsible for damaging DNA, leading to mutations that can cause cancer and tumor growth.
  • The study shows that ROS-related DNA damage increases the release of extracellular vesicles (EVs) that enhance cancer cell migration and invasion by promoting epithelial-mesenchymal transition (EMT).
  • A key player in this process is OGG1, which, when inhibited, can block EV release, reduce cancer progression, and suggests new therapeutic targets for treating cancer.

Article Abstract

Reactive oxygen species (ROS)-induced oxidative DNA damages have been considered the main cause of mutations in genes, which are highly related to carcinogenesis and tumour progression. Extracellular vesicles play an important role in cancer metastasis. However, the precise role of DNA oxidative damage in extracellular vesicles (EVs)-mediated cancer cell migration and invasion remains unclear. Here, we reveal that ROS-mediated DNA oxidative damage signalling promotes tumour metastasis through increasing EVs release. Mechanistically, 8-oxoguanine DNA glycosylase (OGG1) recognises and binds to its substrate 8-oxo-7,8-dihydroguanine (8-oxoG), recruiting NF-κB to the synaptotagmin 7 (SYT7) promoter and thereby triggering SYT7 transcription. The upregulation of SYT7 expression leads to increased release of E-cadherin-loaded EVs, which depletes intracellular E-cadherin, thereby inducing epithelial-mesenchymal transition (EMT). Notably, Th5487, the inhibitor of DNA binding activity of OGG1, blocks the recognition and transmission of oxidative signals, alleviates SYT7 expression and suppresses EVs release, thereby preventing tumour progression in vitro and in vivo. Collectively, our study illuminates the significance of 8-oxoG/OGG1/SYT7 axis-driven EVs release in oxidative stress-induced tumour metastasis. These findings provide a deeper understanding of the molecular basis of cancer progression and offer potential avenues for therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375530PMC
http://dx.doi.org/10.1002/jev2.12505DOI Listing

Publication Analysis

Top Keywords

tumour metastasis
12
evs release
12
8-oxoguanine dna
8
promotes tumour
8
tumour progression
8
extracellular vesicles
8
dna oxidative
8
oxidative damage
8
syt7 expression
8
oxidative
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!