Standardized evaluation of adeno-associated virus (AAV) vector products for biotherapeutic application is essential to ensure the safety and efficacy of gene therapies. This includes analyzing the critical quality attributes of the product. However, many of the current analytical techniques used to assess these attributes have limitations, including low throughput, large sample requirements, poorly understood measurement variability, and lack of comparability between methods. To address these challenges, it is essential to establish higher-order reference methods that can be used for comparability measurements, optimization of current assays, and development of reference materials. Highly precise methods are necessary for measuring the empty/partial/full capsid ratios and the titer of AAV vectors. Additionally, it is important to develop methods for the measurement of less-established critical quality attributes, including post-translational modifications, capsid stoichiometry, and methylation profiles. By doing so, we can gain a better understanding of the influence of these attributes on the quality of the product. Moreover, quantification of impurities, such as host-cell proteins and DNA contaminants, is crucial for obtaining regulatory approval. The development and application of refined methodologies will be essential to thoroughly characterize AAV vectors by informing process development and facilitating the generation of reference materials for assay validation and calibration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372808PMC
http://dx.doi.org/10.1016/j.omtm.2024.101309DOI Listing

Publication Analysis

Top Keywords

aav vectors
12
critical quality
12
quality attributes
12
analytical techniques
8
reference materials
8
attributes
5
characterization aav
4
vectors review
4
review analytical
4
techniques critical
4

Similar Publications

Adeno-associated virus (AAV)-based vectors are the most frequently used platform for retinal gene therapy. Initially explored for the treatment of loss-of-function mutations underpinning many inherited retinal diseases, AAV-based ocular gene therapies are increasingly used to transduce endogenous cells to produce therapeutic proteins, thus producing site-specific biofactories. Relatively invasive ocular routes of administration (ROA) mean prominent procedure-related in-life, and histopathological findings may be observed with some regularity.

View Article and Find Full Text PDF

Chronic hypereosinophilia, defined as persistent elevated blood levels of eosinophils ≥1,500/μL, is associated with tissue infiltration of eosinophils and consequent organ damage by eosinophil release of toxic mediators. The current therapies for chronic hypereosinophilia have limited success, require repetitive administration, and are associated with a variety of adverse effects. As a novel approach to treat chronic hypereosinophilia, we hypothesized that adeno-associated virus (AAV)-mediated delivery of an anti-human eosinophil antibody would provide one-time therapy that would mediate persistent suppression of blood eosinophil levels.

View Article and Find Full Text PDF

Worldwide, thousands of male patients who carry ATP Binding Cassette Subfamily D Member 1 () mutations develop adrenomyeloneuropathy (AMN) in mid-adulthood, a debilitating axonopathy of the spinal cord. Today AAV gene therapy brings the most hope for this orphan disease. We previously reported that an AAV9-MAG- vector injected intravenously in the neonatal period prevented the disease in 2-year-old mice, the AMN mouse model.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (AAV) is one of the main viral vector-based gene therapy platforms. AAV is a virus consisting of a ≈25 nm diameter capsid with a ≈4.7 kb cargo capacity.

View Article and Find Full Text PDF

Patients with osteosarcoma (OS), a debilitating pediatric bone malignancy, have limited treatment options to combat aggressive disease. OS thrives on insulin growth factor (IGF)-mediated signaling that can facilitate cell proliferation. Previous efforts to target IGF-1R signaling were mostly unsuccessful, likely due to compensatory signaling through alternative splicing of the insulin receptor () to the proliferative isoform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!