Similar Publications

Since the building blocks of DNA are nonfluorescent, various external fluorescence reporters have been employed to investigate the structure, dynamics, and function of DNA G-quadruplexes (GQs) and i-motifs (iMs), which play an important role in gene regulation and expression. However, most of those fluorescence reporters lack the ability to provide site-specific structural information of interest. Therefore, it is necessary to develop fluorescent nucleoside analogues that can be covalently inserted into oligonucleotides, which not only serve this purpose, but minimize any potential perturbation towards the native structure of the DNA systems in question.

View Article and Find Full Text PDF

Engineering a Bifunctional Fusion Purine/Pyrimidine Nucleoside Phosphorylase for the Production of Nucleoside Analogs.

Biomolecules

September 2024

Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Villaviciosa de Odón, 28670 Madrid, Spain.

Article Synopsis
  • * The study introduces engineered bifunctional fusion enzymes from purine nucleoside phosphorylase I (PNP I) and thymidine phosphorylase (TP), offering a more efficient one-pot synthesis method for nucleosides, as opposed to traditional multi-enzyme systems.
  • * These fusion enzymes operate well at high temperatures (60-90 °C) and specific pH levels (6-8), demonstrating strong stability and successful catalysis for various nucleoside analogs, highlighting their potential in
View Article and Find Full Text PDF

Nucleosides are pervasive building blocks that are found throughout nature and used extensively in medicinal chemistry and biotechnology. However, the preparation of base-modified analogues using conventional synthetic methodology poses challenges in scale-up and purification. In this work, an integrated approach involving structural analysis, screening and reaction optimization, is established to prepare 2'-deoxyribonucleoside analogues catalysed by the type II nucleoside 2'-deoxyribosyltransferase from (NDT-2).

View Article and Find Full Text PDF

Nucleosides are ubiquitous to life and are required for the synthesis of DNA, RNA, and other molecules crucial for cell survival. Despite the notoriously difficult organic synthesis of nucleosides, 2'-deoxynucleoside analogues can interfere with natural DNA replication and repair and are successfully employed as anticancer, antiviral, and antimicrobial compounds. Nucleoside 2'-deoxyribosyltransferase (dNDT) enzymes catalyze transglycosylation via a covalent 2'-deoxyribosylated enzyme intermediate with retention of configuration, having applications in the biocatalytic synthesis of 2'-deoxynucleoside analogues in a single step.

View Article and Find Full Text PDF

Fluorescent nucleosides are useful chemical tools for biochemical research and are frequently incorporated into nucleic acids for a variety of applications. The most widely utilized fluorescent nucleoside is 2-aminopurine-2'-deoxyribonucleoside (2APN). However, 2APN is limited by a moderate Stokes shift, molar extinction coefficient, and quantum yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!