Nucleosides are pervasive building blocks that are found throughout nature and used extensively in medicinal chemistry and biotechnology. However, the preparation of base-modified analogues using conventional synthetic methodology poses challenges in scale-up and purification. In this work, an integrated approach involving structural analysis, screening and reaction optimization, is established to prepare 2'-deoxyribonucleoside analogues catalysed by the type II nucleoside 2'-deoxyribosyltransferase from (NDT-2). Structural analysis in combination with substrate profiling, identified the constraints on pyrimidine and purine acceptor bases by NDT2. A solvent screen identifies pure water as a suitable solvent for the preparation of high value purine and pyrimidine 2'-deoxyribonucleoside analogues on a gram scale under optimized reaction conditions. This approach provides the basis to establish a convergent, step-efficient chemoenzymatic platform for the preparation of high value 2'-deoxyribonucleosides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368039 | PMC |
http://dx.doi.org/10.1039/d4sc04938a | DOI Listing |
Chembiochem
January 2025
Peking University, College of Chemistry and Molecular Engineering, No. 292 Chengfu Road, Haidian District, 100871, Beijing, CHINA.
Since the building blocks of DNA are nonfluorescent, various external fluorescence reporters have been employed to investigate the structure, dynamics, and function of DNA G-quadruplexes (GQs) and i-motifs (iMs), which play an important role in gene regulation and expression. However, most of those fluorescence reporters lack the ability to provide site-specific structural information of interest. Therefore, it is necessary to develop fluorescent nucleoside analogues that can be covalently inserted into oligonucleotides, which not only serve this purpose, but minimize any potential perturbation towards the native structure of the DNA systems in question.
View Article and Find Full Text PDFBiomolecules
September 2024
Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Villaviciosa de Odón, 28670 Madrid, Spain.
Chem Sci
August 2024
Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
Nucleosides are pervasive building blocks that are found throughout nature and used extensively in medicinal chemistry and biotechnology. However, the preparation of base-modified analogues using conventional synthetic methodology poses challenges in scale-up and purification. In this work, an integrated approach involving structural analysis, screening and reaction optimization, is established to prepare 2'-deoxyribonucleoside analogues catalysed by the type II nucleoside 2'-deoxyribosyltransferase from (NDT-2).
View Article and Find Full Text PDFACS Catal
March 2024
School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom.
Nucleosides are ubiquitous to life and are required for the synthesis of DNA, RNA, and other molecules crucial for cell survival. Despite the notoriously difficult organic synthesis of nucleosides, 2'-deoxynucleoside analogues can interfere with natural DNA replication and repair and are successfully employed as anticancer, antiviral, and antimicrobial compounds. Nucleoside 2'-deoxyribosyltransferase (dNDT) enzymes catalyze transglycosylation via a covalent 2'-deoxyribosylated enzyme intermediate with retention of configuration, having applications in the biocatalytic synthesis of 2'-deoxynucleoside analogues in a single step.
View Article and Find Full Text PDFFluorescent nucleosides are useful chemical tools for biochemical research and are frequently incorporated into nucleic acids for a variety of applications. The most widely utilized fluorescent nucleoside is 2-aminopurine-2'-deoxyribonucleoside (2APN). However, 2APN is limited by a moderate Stokes shift, molar extinction coefficient, and quantum yield.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!