The compositional tunability of non-isovalent multicomponent chalcogenide thin films and the extent of atomic ordering of their crystal structure is key to the performance of many modern technologies. In contrast, the effects of ordering are rarely studied for quantum-confined materials, such as colloidal nanocrystals. In this paper, the possibilities around composition tunability and atomic ordering are explored in ultrasmall ternary and quaternary quantum dots, taking I-III-VI-group Cu-Zn-In-Se semiconductor as a case study. A quantitative synthesis for 3.3 nm quaternary chalcogenide nanocrystals is developed and shown that cation and cationic vacancy ordering can be achieved in these systems consisting of only 100s of atoms. Combining experiment and theoretical calculations, the relationship between structural ordering and optical properties of the materials are demonstrated. It is found that the arrangement and ordering of cationic sublattice plays an important role in the luminescent efficiency. Specifically, the concentration of Cu-vacancy couples in the nanocrystal correlates with luminescence quantum yield, while structure ordering increases the occurrence of such optically active Cu-vacancy units. On the flip side, the detrimental impact of cationic site disorder in I-III-VI nanocrystals can be mitigated by introducing a cation of intermediate valence, such as Zn (II).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202406351 | DOI Listing |
Nat Commun
December 2024
Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
Extending ferroelectric materials to two-dimensional limit provides versatile applications for the development of next-generation nonvolatile devices. Conventional ferroelectricity requires materials consisting of at least two constituent elements associated with polar crystalline structures. Monolayer graphene as an elementary two-dimensional material unlikely exhibits ferroelectric order due to its highly centrosymmetric hexagonal lattices.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Computing Power Network and Information Security, Shandong Computer Science Center (National Supercomputing Center in Jinan), Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, Shandong, P. R. China.
Crystal structure similarity is useful for the chemical analysis of nowadays big materials databases and data mining new materials. Here we propose to use two-dimensional Wasserstein distance (earth mover's distance) to measure the compositional similarity between different compounds, based on the periodic table representation of compositions. To demonstrate the effectiveness of our approach, 1586 Cu-S based compounds are taken from the inorganic crystal structure database (ICSD) to form a validation dataset.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Environmental Management and Toxicology, Michael Okpara University of Agriculture, Umudike, Nigeria.
The geochemical and chemical constituents of river water quality could be influenced by human activities and organic processes like water interacting with the lithogenic structure that the river flows through. Evaluating evidence based primary root of the predominant pollutant ions, their interactions as well as the factors controlling their dominance is crucial in studies regarding water environment and hydrology especially as most studies focus on theoretical methods. In order to understand the water cycle, safeguard surface water resources, and preserve the human environment, this study evaluated surface water hydro-chemical facies, quality dynamics, and portability in southern Nigeria using multivariate statistical approaches by analyzing selected hydro-chemical characteristics as indicators of pollution along the river during wet and dry seasons.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Spin-polarized edge states in two-dimensional materials hold promise for spintronics and quantum computing applications. Constructing stable edge states by tailoring two-dimensional semiconductor materials with bulk-boundary correspondence is a feasible approach. Recently layered NiI is suggested as a two-dimensional type-II multiferroic semiconductor with intrinsic spiral spin ordering and chirality-induced electric polarization.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, GC University, Lahore, Pakistan.
In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!