Aims: As the interactions of alcohol and HIV/SIV infection and their impact on liver metabolic homeostasis remain to be fully elucidated, this study aimed to determine alcohol-mediated hepatic adaptations of metabolic pathways in SIV/ART-treated female rhesus macaques fed a nutritionally balanced diet.
Methods: Macaques were administered chronic binge alcohol (CBA; 13-14 g ethanol/kg/week for 14.5 months; n = 7) or vehicle (VEH; n = 8) for 14.5 months. Livers were excised following an overnight fast. Gene and protein expression, enzymatic activity, and lipid content were determined using frozen tissue and histological staining was performed using paraffin-embedded tissue.
Results: CBA/SIV macaques showed increased hepatic protein expression of electron transport Complex III and increased gene expression of glycolytic (phosphofructokinase and aldolase) and gluconeogenic (pyruvate carboxylase) enzymes and of genes involved in lipid turnover homeostasis (perilipin 1, peroxisome proliferator-activated receptor gamma, carbohydrate responsive binding protein, and acetyl-CoA carboxylase B) as compared to that of livers from the VEH/SIV group. Plasma triglyceride concentration had a significant positive association with liver triglyceride content in the CBA/SIV group.
Conclusions: These results reflect CBA-associated alterations in expression of proteins and genes involved in glucose and lipid metabolism homeostasis without significant evidence of steatosis or dysglycemia. Whether these changes predispose to greater liver pathology upon consumption of a high fat/high sugar diet that is more aligned with dietary intake of PWH and/or exposure to additional environmental factors warrants further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374886 | PMC |
http://dx.doi.org/10.1093/alcalc/agae060 | DOI Listing |
Biomedicines
December 2024
Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
Susceptibility to and severity of pulmonary infections increase with ethanol consumption. We have previously shown that ethanol-induced changes in the gut microbiome disrupt gut homeostasis, allowing for the translocation of proinflammatory mediators into the circulation and eliciting an immune response in the lung. Additionally, targeting the gut with butyrate supplementation not only rescues ethanol-induced disruptions to gut health but also reverses aspects of immune dysregulation in the lungs.
View Article and Find Full Text PDFBiomolecules
November 2024
Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
Alcohol consumption is believed to affect Alzheimer's disease (AD) risk, but the contributing mechanisms are not well understood. A potential mediator of the proposed alcohol-AD connection is autophagy, a degradation pathway that maintains organelle and protein homeostasis. Autophagy is regulated through the activity of Transcription factor EB (TFEB), which promotes lysosome and autophagy-related gene expression.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
Alcohol
December 2024
Department of Psychiatry, Yale University, 34 Park Street, 3(rd) Floor Research, New Haven, CT 06508, USA.
Stress is a major contributing factor to binge drinking and development of alcohol use disorders (AUD), particularly in women. Both stress and chronic ethanol can enhance neuroinflammatory processes, which may dysregulate limbic circuits involved in ethanol reinforcement. Clinical and preclinical studies have identified sex differences in alcohol intake in response to neuroinflammatory triggers.
View Article and Find Full Text PDFChin Med
December 2024
Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
Background: Liuweizhiji Gegen-Sangshen oral liquid (LGS), as a Chinese medicinal preparation, is developed from a Traditional Chinese medicinal formula consisting of six Chinese medicinal herbs, including Puerariae lobatae radix, Hoveniae semen, Imperatae rhizoma, Crataegi fructus, Mori fructus and Canarli fructus, and has been extensively utilized in the prevention and treatment of alcoholic liver disease (ALD) clinically. Previous study has demonstrated that LGS dose-dependently mitigated ALD in rat models. However, whether and how the main characteristic constituents of LGS (the flavonoid and polysaccharide fractions, LGSF and LGSP) contribute to the anti-ALD effect remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!