A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Whole-cell biocatalysis for phthalate esters biodegradation in wastewater by a saline soil bacteria SSB-consortium. | LitMetric

Whole-cell biocatalysis for phthalate esters biodegradation in wastewater by a saline soil bacteria SSB-consortium.

Chemosphere

IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216 Mexico. Electronic address:

Published: September 2024

AI Article Synopsis

  • Phthalic acid esters (PAE) are common environmental pollutants that accumulate in water and require effective degradation methods to mitigate their impact.
  • A study explored the ability of a saline soil bacterial consortium to break down various phthalates, optimizing degradation conditions using response surface methodology and identifying metabolites with advanced techniques.
  • The results indicated that under optimal conditions, the bacterial consortium effectively degraded 84-99% of different phthalates, showcasing potential for bioremediation in contaminated water sources.

Article Abstract

Phthalic acid esters (PAE) are widely used as plasticizers and have been classified as ubiquitous environmental contaminants of primary concern. PAE have accumulated intensively in surface water, groundwater, and wastewaters; thus, PAE degradation is essential. In the present study, the ability of a saline soil bacteria (SSB)-consortium to degrade synthetic wastewater-phthalates with alkyl chains of different lengths, such as diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), and di (2-ethylhexyl) phthalate (DEHP) was characterized. A central composite design-response surface methodology was applied to optimize the degradation of each phthalate, where the independent variables were temperature (21-41 °C), pH (5.3-8.6) and PAE concentration (79.5-920.4 mg L), and Gas Chromatography-Mass Spectrometry was used to identify the metabolites generated during phthalate degradation. Optimal conditions were 31 °C, pH 7.0, and an initial PAE concentration of 500 mg L, where the SSB-consortium removed 84.9%, 98.47%, 99.09% and 98.25% of initial DEP, DBP, BBP, and DEHP, respectively, in 168h. A first-order kinetic model explained - the biodegradation progression, while the half-life of PAE degradation ranged from 12.8 to 29.8 h. Genera distribution of the SSB-consortium was determined by bacterial meta-taxonomic analysis. Serratia, Methylobacillus, Acrhomobacter, and Pseudomonas were the predominant genera; however, the type of phthalate directly affected their distribution. Scanning electron microscopy analysis showed that high concentrations (1000 mg L) of phthalates induced morphological alterations in the bacterial SSB-consortium. The metabolite profiling showed that DEP, DBP, BBP, and DEHP could be fully metabolized through the de-esterification and β-oxidation pathways. Therefore, the SSB-consortium can be considered a potential candidate for bioremediation of complex phthalate-contaminated water resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143243DOI Listing

Publication Analysis

Top Keywords

phthalate
8
saline soil
8
soil bacteria
8
bacteria ssb-consortium
8
pae degradation
8
pae concentration
8
dep dbp
8
dbp bbp
8
bbp dehp
8
ssb-consortium
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!