Air quality degradation presents a significant public health challenge, particularly in rapidly urbanizing regions where changes in land use/land cover (LULC) can dramatically influence pollution levels. This study investigates the association between LULC changes and air pollution (AP) in the five fastest-growing cities of Bangladesh from 1998 to 2021. Leveraging satellite data from Landsat and Sentinel-5P, the analysis reveals a substantial increase in urban areas and sparse vegetation, with declines in dense vegetation and water bodies over this period. Urban expansion was most pronounced in Sylhet (22-254%), while Khulna experienced the largest increase in sparse vegetation (2-124%). Dense vegetation loss was highest in Dhaka (20-77%) and water bodies (9-59%) over this period. Concentrations of six major air pollutants (APTs) - aerosol index, CO, HCHO, NO, O, and SO - were quantified, showing alarmingly high levels in densely populated industrial and commercial zones. Pearson's correlation indicates strong positive associations between APTs and urban land indices (R > 0.8), while negative correlations exist with vegetation indices. Geographically weighted regression modeling identifies city centers with dense urban built-up as pollution hotspots, where APTs exhibited stronger impacts on land cover changes (R > 0.8) compared to other land classes. The highest daily emissions were observed for O (1031 tons) and CO (356 tons) at Chittagong in 2021. In contrast, areas with substantial green cover displayed weaker pollutant-land cover associations. These findings underscore how unplanned urbanization drives AP by replacing natural land cover with emission sources, providing crucial insights to guide sustainable urban planning strategies integrating pollution mitigation and environmental resilience.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124877DOI Listing

Publication Analysis

Top Keywords

land cover
12
air quality
8
air pollution
8
sparse vegetation
8
dense vegetation
8
water bodies
8
urban
6
land
6
cover
6
pollution
5

Similar Publications

Rabies causes 59,000 human deaths annually in over 150 countries. Mass dog vaccination (MDV) is key to controlling dog rabies, requiring 70% coverage in the susceptible dog population to eliminate rabies deaths. MDV campaigns must achieve geographical homogeneity of coverage.

View Article and Find Full Text PDF

The array of wildfire activities instigated by human endeavors has emerged as a significant source of atmospheric pollution, posing considerable risks to both public health and property safety. This study harnesses Sentinel-2 satellite data, employing a variety of methods including spectral index methods, thresholding, and the Random Forest (RF) model for active fire spot detection. The research encompasses a wide range of land cover types across various Chinese regions.

View Article and Find Full Text PDF

Climate change and human activities are the primary drivers influencing changes in runoff dynamics. However, current understanding of future hydrological processes under scenarios of gradual climate change and escalating human activities remains uncertain, particularly in tropical regions affected by deforestation. Based on this, we employed the SWAT model coupled with the near future (2021-2040) and middle future (2041-2060) global climate models (GCMs) under four shared socioeconomic pathways (SSP1-2.

View Article and Find Full Text PDF

Ecological Corridors (ECs) are proposed as cost-effective solutions to improve ecological connectivity in fragmented landscapes. Planning the implementation of ECs must take into account landscape features as they affect the viability of the endeavor and the ECs associated costs. A novel set of geoprocessing tools were used to assess (i) economic viability; (ii) socioeconomic cost-effectiveness; and (iii) to determine priority targets for ECs establishment in a highly fragmented region of Atlantic Forest.

View Article and Find Full Text PDF

Orchard meadows, a specific agroforestry system characterised by scattered high-stem fruit trees, are a traditional element of several cultural landscapes in Central Europe and provide important ecosystem services. Since the middle of the 20th century, orchard meadows have drastically declined across Europe. Spatial information on the drivers and patterns of such a decline in several regions in Central Europe is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!