Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Depression is an independent risk factor for adverse outcomes of coronary heart disease (CHD). This study aimed to develop a depression risk prediction model for CHD patients.
Methods: This study utilized data from the National Health and Nutrition Examination Survey (NHANES). In the training set, reference literature, logistic regression, LASSO regression, optimal subset algorithm, and machine learning random forest algorithm were employed to screen prediction variables, respectively. The optimal prediction model was selected based on the C-index, Net Reclassification Improvement (NRI), and Integrated Discrimination Improvement (IDI). A nomogram for the optimal prediction model was constructed. 3 external validations were performed.
Results: The training set comprised 1375 participants, with a depressive symptoms prevalence of 15.2 %. The optimal prediction model was constructed using predictors obtained from optimal subsets algorithm (C-index = 0.774, sensitivity = 0.751, specificity = 0.685). The model includes age, gender, education, marriage, diabetes, tobacco use, antihypertensive drugs, high-density lipoprotein cholesterol (HDLC), and aspartate aminotransferase (AST). The model demonstrated consistent discrimination ability, accuracy, and clinical utility across the 3 external validations.
Limitations: The applicable population of the model is CHD patients. And the clinical benefits of interventions based on the prediction results are still unknown.
Conclusion: We developed a depression risk prediction model for CHD patients, which was presented in the form of a nomogram for clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jad.2024.08.218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!